Fractional Exponent of the Modified Stokes-Einstein Relation in the Metallic Glass-Forming Melt Pd43Cu27Ni10P20

Article Preview

Abstract:

The diffusion coefficient in the metallic glass-forming systems such as Pd-Cu-Ni-P exhibits a marked deviation from the Stokes-Einstein (SE) relation in the proximity of the glass transition temperature. Such a deviation is characterized by the fractional exponent p of the modified SE expression. For the material Pd43Cu27Ni10P20, it has been reported that it takes the value p = 0.75. In this work, it is shown that the value of p is highly correlated with the ratio ED / ENB, where ED and ENB are the activation energies for diffusion coefficient D and cooperativity NB defined by the Bond Strength-Coordination Number Fluctuation (BSCNF) model. The present paper reports that for the metallic glass-forming melt Pd43Cu27Ni10P20, the fractional exponent p can be calculated accurately within the framework of the BSCNF model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

1463-1468

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.J. Jin, X.J. Gu, P. Wen, L.B. Wang and K. Lu: Acta Mater. Vol. 51 (2003), p.6219.

Google Scholar

[2] O. Haruyama: Intermetallics Vol. 15 (2007) p.659.

Google Scholar

[3] A. Griesche, Th. Zumkley, M. -P. Macht , S. Suzuki and G. Frohberg: Mater. Sci. Eng. A Vols. _375-377 (2004), p.285.

Google Scholar

[4] K. Rätzke, V. Zöllmer, A. Bartsch, A. Meyer and F. Faupel: J. Non-Cryst. Solids Vol. 353 _(2007), p.3285.

DOI: 10.1016/j.jnoncrysol.2007.05.157

Google Scholar

[5] A. Griesche, M. -P. Macht, S. Suzuki, K. -H. Kraatz and G. Frohberg: Scripta Mater. Vol. 57 (2007) p.477.

Google Scholar

[6] R. Richert and K. Samwer: New. J. Phys. Vol. 9 (2007), 36.

Google Scholar

[7] G.J. Fan, H. -J. Fecht and E.J. Lavernia: Appl. Phys. Lett. Vol. 84 (2004), p.487.

Google Scholar

[8] I. -R. Lu, G. Wilde, G.P. Görler, and R. Willnecker: J. Non-Cryst. Solids Vols. 250-252 (1999), _p. _577.

DOI: 10.1016/s0022-3093(99)00135-0

Google Scholar

[9] B. Yang, J. Jiang, Y. Zhuang, K. Saksl and G. Chen: J. Univ. Sci. Tech. Beijing Vol. 14 (2007) p.356.

Google Scholar

[10] A. Grandjean, M. Malki, C. Simonnet, D. Manara and B. Penelon: Phys. Rev. B Vol. 75 (2007), _ 054112.

Google Scholar

[11] A. Voronel, E. Veliyulin and V. Sh. Machavariani: Phys. Rev. Lett. Vol. 80 (1998), p.2630.

Google Scholar

[12] M. Aniya: J. Therm. Anal. Cal. Vol. 69 (2002), p.971.

Google Scholar

[13] M. Aniya and T. Shinkawa: Mater. Trans. Vol. 48 (2007), p.1793.

Google Scholar

[14] M. Aniya and M. Ikeda: Mater. Sci. Forum Vols. 638-642 (2010), p.1621.

Google Scholar

[15] M. Ikeda and M. Aniya: Intermetallics, doi: 10. 1016/j. intermet. 2010. 01. 009.

Google Scholar

[16] M. Ikeda and M. Aniya: J. Phys. Soc. Jpn. Vol. 79 (2010), Suppl. A, p.150.

Google Scholar

[17] G. Adam and J.H. Gibbs: J. Chem. Phys. Vol. 43 (1965), p.139.

Google Scholar

[18] K. L. Ngai: J. Non-Cryst. Solids Vol. 275 (2000), p.7.

Google Scholar

[19] L. Battezzati: Mater. Sci. Eng. A Vols. 375-377 (2004), p.60.

Google Scholar

[20] A.L. Greer and E. Ma: MRS. Bull. Vol. 32 (2007), p.611.

Google Scholar