Synthesis, Characterization and Photocatalytic Activities of Bismuth Vanadate by Facile Co-Precipitation Method

Article Preview

Abstract:

Monoclinic BiVO4 photocatalysts were synthesized via facile and straightforward co-precipitation method at room temperature without high temperature treatment and characterized with X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), flourier transfer infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), and transmission electron microscopy (TEM). The results indicate that through proper selection of synthesis conditions, it is possible to obtain high efficient BiVO4 nanoparticles. The as-prepared monoclinic BiVO4 photocatalysts have an average crystallite size of about 20 nm with the particle size of about 20 to 50 nm. Their photocatalytic activities were evaluated by decolorization of rhodamine B in aqueous solution under visible light irradiation, and the relationship between the photocatalytic activity of BiVO4 and their physicochemical properties were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

1469-1472

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Yu, X. Tan, L. Zhao, Y. X. Yin, P. Chen, J. Wei. Chem. Eng. J. Vol. 157 (2010), p.86.

Google Scholar

[2] C. Chen, W. M. Cai, M. C. Long, Y. Y. Zhang, B. X. Zhou, Y. H. Wu, D.Y. Wu. J. Hazard. Mate. Vol. 178 (2010), p.560.

Google Scholar

[3] L. Ge. Sci. Technol. Vol. 44 (2007), p.263.

Google Scholar

[4] H. B. Fang, M. X. Xu, L. Ge, Z. Y. He. Trans. Nonferrous Soc. China Vol. 16 (2006), p.5373.

Google Scholar

[5] L. M. Song, S. J. Zhang. J. Hazard. Mater. Vol. 174 (2010), p.563.

Google Scholar

[6] X. F. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. B. Ji, S. B. Deng, G. Yu. Catal. Commun. Vol. 11 (2010), p.460.

Google Scholar

[7] L. Z. Li, B. Yan. J. Non-Cryst. Solids, Vol. 355 (2009), p.776.

Google Scholar

[8] X. Zhang, T. G. Xu, W. Q. Yao, Y. F. Zhu. Appl. Surf. Sci. Vol. 255 (2009), p.8036.

Google Scholar

[9] Z. J. Zhang, W. Z. Wang, M. Shang, W. Z. Yin. J. Hazard. Mater. Vol. 177 (2010), p.1013.

Google Scholar

[10] Y. Zhou, K. Vuille, A. Heel, B. Probst, R. Kontic, Greta R. Patzke. Appl. Catal. A: Gen. Vol. 375 (2010), p.140.

Google Scholar

[11] A. Martínez-de la Cruz, U. M. García Pérez. Mater. Res. Bull. Vol. 45 (2010), p.135.

Google Scholar

[12] H. Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi. J. Eur. Ceram. Soc. 28 Vol. (2008), p.2955.

Google Scholar

[13] A. P. Zhang, J. Z. Zhang. Spectrochimica Acta Part A Vol. 73 (2009), p.336.

Google Scholar

[14] T. Yang and D. Xia. J. Cryst. Growth, 311, Vol. 20 (2009), p.4505.

Google Scholar

[15] V. P. Tolstoy and E. V. Tolstobrov. Solid State Ionics, Vol. 151 (2002), p.165.

Google Scholar

[16] D. Dvoranová, V. Brezová, M. Mazúra, M. A. Malati. Appl. Catal. B: Environ. Vol. 37 (2002), p.91.

Google Scholar