Ferroelectric and Piezoelectric Properties of (1-x)BaTi0.8Zr0.2O3-xBa0.7Ca0.3TiO3 Ceramics Prepared by Sol-Gel Technique

Article Preview

Abstract:

The(1-x)BaTi0.8Zr0.2O3-xBa0.7Ca0.3TiO3 ceramics have been prepared by sol-gel technique, where x is from 0.2 to 0.6. It reveals that the dense ceramics can be obtained when the sintered temperature is above 1250°C. It is lower than that of solid state reaction ceramics. In particular, when x=0.3, at which is near the MPB composition, the ferroelectric and piezoelectric properties are more excellent than the others. The maximum dielectric constant is above 9000, which can be observed in the butterfly shape curves of dielectric constant as a function of electric field. The maximum piezoelectric coefficient d33 can reach 400 pm/V, and it is obtained from the piezoelectric response loops.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

1480-1485

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Bolten, U. Bottger, and R. Waser: J. Eur. Ceram. Soc. Vol. 24(2004), p.725.

Google Scholar

[2] Zhixiang Zhu, Jingfeng Li, and Yunya Liu, et al: Acta Mater. Vol. 57(2009), p.4288.

Google Scholar

[3] Jongok Kim, Sun A Yang, and Yong Chan Choi, et al: Nano Lett. Vol. 8(2008), p.1813.

Google Scholar

[4] Koduri Ramam, and Marta Lopez: J. Alloys Compd. Vol. 465(2008), p.446.

Google Scholar

[5] Yueming Li, Wen Chen, and Qing Xu, et al: Mater. Lett. Vol. 59(2005), p.1361.

Google Scholar

[6] Minglei Zhao, Qingzao Wu, and Chunlei Wang, et al: J. Alloy Compd. Vol. 476(2009), p.393.

Google Scholar

[7] Chenol-Woo Ahn, Hwi-Yeol Park, and Sahn Nahm, et al: Sens. Actuators A Vol. 136(2007), p.255.

Google Scholar

[8] Chenggang Xu, Dunmin Lin, and K.W. Kwok: Solid State Sci. Vol. 10(2008), p.934.

Google Scholar

[9] Laijun Liu, Huiqing Fan, Shanming Ke, and Xiuli Chen: J. Alloys Compd. Vol. 458(2008), p.504.

Google Scholar

[10] Dunmin Lin, K.W. Kwok, and H.L. W. Chan: Solid State Ionics Vol. 178(2008), p. (1930).

Google Scholar

[11] Wenfeng Liu, and Xiaobing Ren: Phys. Rev. Lett. Vol. 103(2009), p.257602.

Google Scholar

[12] Qing Xu, Yuheng Huang, and Min Chen, et al: J. Phys. Chem. Sol. Vol. 69(2008), p. (1996).

Google Scholar

[13] J. Iniguez, D. Vanderbilt, and L. Bellaiche: Phys. Rev. B Vol. 64(2003), p.224107.

Google Scholar

[14] Huiqing Fan, Seung-Ho Lee, and Chang-Bun Yoon, et al: J. Eur. Ceram. Soc. Vol. 22(2002), p.1699.

Google Scholar

[15] Hiroshi Maiwa, and Seung-Hyun Kim: Ceram. Int. Vol. 34(2008), p.961.

Google Scholar

[16] D.Y. Wang, P. Yun, and Y. Wang, et al: Thin Solid Films Vol. 517(2009), p. (2092).

Google Scholar

[17] X. G. Tang, J. Wang and H. L. W. Chan: Appl. Phys. Lett. Vol. 85(2004), p.991.

Google Scholar

[18] Xiangyun Deng, Xiaohui Wang, and Longtu Li, et al: Appl. Phys. Lett. Vol. 88(2006), p.252905.

Google Scholar