Creep Modeling for Concrete Filled Steel Tubular Members Compressed with a Large Eccentricity

Abstract:

Article Preview

Based on concrete creep calculation model B3 and mechanical characteristics of concrete-filled steel tube (CFT) beam-column members of large eccentricity, a creep calculation model of CFT beam-column members of large eccentricity is constructed, which accords with mechanisms of concrete creep, and creep characteristics of concrete core of CFT beam-column members of large eccentricity have been taken into account. The model is verified against previous creep experiments for CFT beam-column specimens, by changing model B3 for ACI209, CEB90, GL2000 model, elastic continuation and plastic flow theory. The results show that introduction of model B3 to predicting creep of CFT beam-column members with a large eccentricity is necessary. Using the model, a study is then carried out on the effects of practical design parameters, such as concrete mix (e.g. water to cement ratio ( ), aggregate to cement ratio ( )), steel ratio and eccentricity ratio, on creep of CFT beam-column members with a large eccentricity.

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Edited by:

Jinglong Bu, Zhengyi Jiang and Sihai Jiao

Pages:

1343-1351

DOI:

10.4028/www.scientific.net/AMR.150-151.1343

Citation:

B. Han et al., "Creep Modeling for Concrete Filled Steel Tubular Members Compressed with a Large Eccentricity", Advanced Materials Research, Vols. 150-151, pp. 1343-1351, 2011

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.