Structural Transformation of Aluminum Nanowires during Solidification

Article Preview

Abstract:

The computer simulation of the structural evolutions of Al nanowires on cooling has been carried out based on the embedded atom method potential. The infinite Al nanowire was modeled by super-cell with a one-dimensionally periodical boundary condition along the [001] direction. The simulation results indicate that the microstructure of Al nanowires changed from amorphous to helical multi-shelled structure along with the drops of cooling rate. The helical multi-shelled structure possesses some features of amorphous structure, but it is more stable than the later. Moreover, the Al nanowires still keep the helical multi-shelled structure even if the cooling rate decreased to 1010 K/s.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

160-163

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kondo and K. Takayangi: Science Vol. 289 (2000), p.606.

Google Scholar

[2] V. Rodrigues and D. Ugate: Phys. Rev. B Vol. 63 (2001), p.073405.

Google Scholar

[3] M. Barbic, J.J. Mock, D.R. Smith and S. Schultz: J. Appl. Phys. Vol. 91 (2002), p.9341.

Google Scholar

[4] S. Michotte, S.M. Tempfli and L. Piraux: Appl. Phys. Lett. Vol. 82 (2003), p.4119.

Google Scholar

[5] J.Y. Kim and J.R. Greer: Appl. Phys. Lett. Vol. 93 (2008), p.101916.

Google Scholar

[6] S.H. Oh, M. Legros, D. Kiener and G. Dehm: Nat. Mater. Vol. 8 (2009), p.95.

Google Scholar

[7] S. Buzzi, M. Dietiker, K. Kunze and R. Loffler: Philos. Mag. Vol. 89 (2009), p.869.

Google Scholar

[8] O. Gülseren, F. Ercolessi and E. Tosatti: Phys. Rev. Lett. Vol. 80 (1998), p.3775.

Google Scholar

[9] B.L. Wang, S.Y. Yin, G.H. Wang, A. Buldum and J.J. Zhao: Phys. Rev. Lett. Vol. 86 (2001), p. (2046).

Google Scholar

[10] B.L. Wang, S.Y. Yin, G.H. Wang and J.J. Zhao: J. Phys.: Condens. Matter Vol. 13 (2001), p. L403.

Google Scholar

[11] B.L. Wang, G.H. Wang and J.J. Zhao: Phys. Rev. B Vol. 65 (2002), p.235406.

Google Scholar

[12] B.L. Wang, G.H. Wang, Y. Ren, H.Q. Sun, X.S. Chen and J.J. Zhao: J. Phys.: Condens. Matter Vol. 15 (2003), p.2327.

Google Scholar

[13] T. Makita, K. Doi, K. Nakamura and A. Tachibana: J. Chem. Phys. Vol. 119 (2003), p.538.

Google Scholar

[14] C. Deng and F. Sansoz: Acta Materialia Vol. 57 (2009), p.6090.

Google Scholar

[15] T. Ono, S. Tsukamoto and K. Hirose: Appl. Phys. Lett. Vol. 82 (2003), p.4570.

Google Scholar

[16] M.S. Daw and M.I. Baskes: Phys. Rev. Lett. Vol. 50 (1983), p.1285.

Google Scholar

[17] M.S. Daw and M.I. Baskes: Phys. Rev. B Vol. 29 (1984), p.6443.

Google Scholar