Preparation and Characterization of Poly(Lactic Acid)/Ethylene Glycidyl Methacrylate Copolymer Blends

Article Preview

Abstract:

Both tensile and tear strength values of PLAxEGMCy blown-film specimens in machine and transverse directions improve significantly and reach the maximum values as their EGMC contents approach an optimum value of 6 wt%. The melt shear viscosity values of PLAxEGMCy resins measured at varying shear rates are significantly higher than those of the PLA resin and increase consistently with their EGMC contents. FT-IR analysis suggest that the carboxylic acid groups of PLA molecules react with the epoxy groups of EGMC molecules during the reactive-extrusion processes of PLAxEGMCy specimens. Further DMA and morphological analysis of PLAxEGMCy specimens reveal that EGMC molecules are phase-separated with PLA molecules at EGMC contents equal to or more than 2 wt%, since distinguished phase-separated EGMC droplets and tanδ transitions were found on fracture surfaces and tanδ curves of PLAxEGMCy specimens, respectively. Possible reasons accounting for the above interesting properties of the PLA/EGMC specimens are proposed in this study.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

139-143

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Jacobsen, H. G. Fritz: Polym Eng and Sci, 39, 1303. (1999).

Google Scholar

[2] K. Meinander, M. Niemi, J. S. Hakola, J. F. Selin: Macromol Symp, 123, 147. (1997).

DOI: 10.1002/masy.19971230115

Google Scholar

[3] I. Rashkov, N. Manolova, S. M. Li, J. L. Espartero, M. Vert: Macromolecules, 29, 50. (1996).

Google Scholar

[4] X. H. Chen, S. P. McCarthy, R. A. Gross: Macromolecules, 30, 4295. (1997).

Google Scholar

[5] G. Maglio, A. Migliozzi, R. Palumbo: Polymer, 44, 369. (2003).

Google Scholar

[6] D. Chon, A. Hotovely-Salomon: Polymer, 46, 2068. (2005).

Google Scholar

[7] N. S. Choi, S. H. Kim, K. Y. Cho, J. K. Park: J Appl Polym Sci, 86, 1892. (2002).

Google Scholar

[8] Y. H. Na,Y. He, X. Shuai,Y. Kikkawa, Y. Doi, Y. Inoue: Biomacromolecules, 3, 1179. (2002).

Google Scholar

[9] A. M. Gajria, V. Dave, R. A. Gross: Polymer, 37, 437. (1996).

Google Scholar

[10] N. Koyama, Y. Doi: Polymer, 38, 1589. (1997).

Google Scholar

[11] I. Ohkoshi, Abe, Y. H.; Doi: Polymer, 41, 5985. (2000).

Google Scholar

[12] J. W. Park, S. S. Im: J Polym Sci Part B: Polym Phys, 40, 931. (2002).

Google Scholar

[13] J. W. Park, S. S. Im: J Appl Polym Sci, 86, 647. (2002).

Google Scholar

[14] J. T. Yeh, W. L. Chai, C. J. Wu: J Appl Polym Sci, revised. (2009).

Google Scholar

[15] J. T. Yeh, C. H. Tsou,W. L. Chai, J. D. Chow, C. Y. Huang, K. N. Chen, C. S. Wu: J Appl Polym Sci, 116, 680. (2010).

Google Scholar