Study on the Morphology and Properties of Nylon11/Montmorillonite Nanocomposites

Article Preview

Abstract:

nylon 11 nanocomposites with different montmorillonite loadings were successfully prepared by melt compounding. XRD and TEM show the exfoliated nanocomposites are formed at low montmorillonite concentration(less than 2wt%) and the intercalated nanocomposites are obtained at higher montmorillonite contents. TGA shows that the thermal stability of the nanocomposites is improved by 27°C when the montmorillonite content is only 2wt%. Mechanical testing shows that the Izod impact strength of all nanocomposites are higher than that of the neat nylon 11, but the tensile strength of the nanocomposites decrease at low nanofiller concentrations (less than 8wt%) and than increased, when the montmorillonite content is 10wt% ,the tensile strength of the nanocomposite is 5% improved than neat nylon 11. This is may be due to the strong interaction between the nylon 11 matrix and the montmorillonite interface.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

223-228

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Dietsche, R. Mulhaupt. Polymer Bulletin, Vol. 43 (1999) , p.395.

Google Scholar

[2] P. J. Yoon, D.L. Hunter, D.R. Paul. Polymer, Vol. 44 (2003), p.5323.

Google Scholar

[3] Fornes T.D.; Yoon P.J.; Hunter D.L.; Keskkula,H.; Paul D.R. polymer , Vol. 43 (2002), p.5915.

Google Scholar

[4] Varlot, K, Reynaud,E.; Kloppfer M.H.; Vigier,G.; Varlet J.J. Polym. Sci., PartB: Polym. Phys, Vol. 39 (2001), p.1360.

DOI: 10.1002/polb.1108

Google Scholar

[5] Dennis H.R.; Hunter D.L.; Chang,D.; Kim,S.; White J.L. Cho J.W.; Paul D.R. Polymer, Vol. 42 (2001), p.9513.

Google Scholar

[6] Reichert, P, Nitz, H, Klinke, S, Brandsch,R. Macromol. Mater. Eng, Vol. 8 ( 2000), p.859.

Google Scholar

[7] Yamamoto, S, Matsuoka,T. J, Chem, Phys, Vol. 107 (2002), p.3300.

Google Scholar

[8] Laura,D. M, Keskkula, H, Barlow,J. W, Paul D.R. Polymer , Vol. 41 (2000)p.4725.

Google Scholar

[9] Fornes,T. D, Yoon,P. J, KeskkulaH, PaulD.R. Polymer1, Vol. 42 ( 2001) , p.9975.

Google Scholar

[10] Wu, Q, Liu, X, Berglund L.A. Polymer, Vol. 43 (2002) , p.2445.

Google Scholar

[11] Tanaka, G, Goettler L.A. Polymer, Vol. 43 (2002) , p.541.

Google Scholar

[12] Fermeglia, M, Ferrone, M, Pricl,S. Fluid Phase Equilib, Vol. 212 (2003) , p.315.

Google Scholar

[13] Alexander B. Morgan, Joseph D. Harris. Polymer, Vol. 44 (2003) , p.2313.

Google Scholar

[14] J.M. Gloaguen, J.M. Lefebvre, Polymer, Vol. 42, (2001) , p.5841.

Google Scholar

[15] Heinemann J, Reichert P, Thomann P, Mulhaupt R. Macromol Rapid Commun, Vol. 20 (1999) 423.

Google Scholar

[16] J.W. Cho D.R. Paul. Polymer, Vol. 42 (2001) , p.1083.

Google Scholar

[17] I. Kelnar, J. Kotek, L. Kapralkova, B.S. Munteanu. Journal of Applies Polymer Science, Vol. 96 (2005) , p.288.

Google Scholar

[18] B. Yalcin, M. Cakmak. Polymer, Vol. 45 (2004) , p.2691.

Google Scholar

[19] T.D. Fornes, D.R. Paul. Polymer, Vol. 44 (2003) , p.3945.

Google Scholar

[20] D.M. Lincoln, R.A. Vaia, Z.G. Wang, B.S. Hsiao. Polymer, 42 (2004) , p.1621.

Google Scholar

[21] T.D. Fornes, P.J. Yoon, D.R. Paul. Polymer, 44 (2003) , p.7545.

Google Scholar

[22] Krishnamoorti R, Yurekli K, Curr Opinion in Colloid Interface Sci , Vol. 6 (2001) , p.464.

Google Scholar

[23] Tianxi Liu, Kian Ping Lim, Wuiwui Chauhari Tjiu, K.P. Pramoda, Zhi-Kuan Chen. Polymer, Vol. 44 (2003) , p.3529.

DOI: 10.1016/s0032-3861(03)00252-0

Google Scholar

[24] Guosheng Zhang, Yongjin Li, Deyue Yan. Journal of Applies Polymer Science, Vol. 42 (2004) , p.253.

Google Scholar

[25] Linin Liu, Zongneng Qi, Xiaoguang Zhu. Journal of Applies Polymer Science, Vol. 71 (1999) , p.1133.

Google Scholar