Hydrothermal Synthesis and Characterization of Single-Crystal Lead Titanate Nanoflakes

Article Preview

Abstract:

Single-crystal PbTiO3 nanoflakes have been synthesized successfully by a hydrothermal method. The as-prepared powders were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and selected area electron diffraction (SAED). It was found that KOH concentration played a key role in the growth of single-crystal tetragonal perovskite PbTiO3 nanoflakes, and the morphology of PbTiO3 crystallites can be controlled by adjusting the KOH concentration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

1222-1226

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.G. Sun, Y.N. Xia: Science Vol. 298 (2002), p.2176.

Google Scholar

[2] Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, H.Q. Yan: Adv. Mater Vol. 15 (2003), p.353.

Google Scholar

[3] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanish, A.P. Alivisato: Nature Vol. 404 (2000), p.59.

Google Scholar

[4] L.F. Gou, C.J. Murphy: Nano Lett Vol. 3 (2003), p.231.

Google Scholar

[5] E. Hosono, S. Fujihara, I. Honma, H.S. Zhou: Adv. Mater Vol. 17(2005), p. (2091).

Google Scholar

[6] L. Zhang, D.R. Chen, X.L. Jiao: J. Phys. Chem. B Vol. 110(2006), p.2668.

Google Scholar

[7] C. Zhang, Y.F. Zhu: Chem. Mater Vol. 17 (2005), p.3537.

Google Scholar

[8] J.S. Xu, D.F. Xue, Y.C. Zhu: J. Phys. Chem. B Vol. 110 (2006), p.17400.

Google Scholar

[9] K.C. Chin, G.L. Chong, C. K. Poh, L.H. Van, C.H. Sow, J.Y. Lin: J. Phys. Chem. C Vol. 111 (2007), p.9136.

Google Scholar

[10] W.B. Bu, Y.P. Xu, N. Zhang, H.R. Chen, Z.L. Hua, J.L. Shi: Langmuir Vol. 23 (2007), p.9002.

Google Scholar

[11] C.W. Peng, T.Y. Ke, L. Brohan, M.R. Plouet, J.C. Huang, C.Y. Lee: Chem. Mater Vol. 20 (2008), p.2426.

Google Scholar

[12] J. Dua, L.Q. Xu, G.F. Zou, L.L. Chai, Y.T. Qian: Mater. Chem. Phys Vol. 103 (2007), p.441.

Google Scholar

[13] G. Burns, B.A. Scott: Phys. Rev., B Vol. 7 (1973), p.3088.

Google Scholar

[14] B.A. Hernandez-Sanchez, K.S. Chang, M.T. Scancella: Chem. Mater Vol. 17 (2005), p.5909.

Google Scholar

[15] A. Safari, Y.H. Lee, A. Halliyal, R.E. Newnham: Am. Ceram. Soc. Bull Vol. 66 (1987), p.668.

Google Scholar

[16] H. Cheng, J. Ma, Z. Zhao: Chem. Mater Vol. 6 (1994), p.1033.

Google Scholar

[17] S.S. Cole, H. Espenschied: J. Phys. Chem Vol. 41 (1937), p.445.

Google Scholar

[18] B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout: Chem. Mater Vol. 14 (2002), p.480.

Google Scholar

[19] Z.Y. Cai, X.R. Xing, R.B. Yu, X.Y. Sun, G.R. Liu: Inorg. Chem Vol. 46 (2007), p.7423.

Google Scholar

[20] M.C. Hsu, I.C. Leu, Y.M. Sun, M.H. Hon: J. Solid State Chem Vol. 179 (2006), p.1421.

Google Scholar

[21] Y. Deng, J.L. Wang, K.R. Zhu, M.S. Zhang, J.M. Hong, Q.R. Gu, Z. Yin: Mater. Lett Vol. 59 (2005), p.3272.

Google Scholar

[22] L.F. Liu, T.Y. Ning, Y. Rena, Z.H. Sun, F.F. Wang W.Y. Zhou, S.H. Xie, L. Song, S.D. Luo Vol. Mater. Sci. Eng. B Vol. 149 (2008), p.41.

Google Scholar

[23] B.X. Wang, Y. Shi, D.F. Xue: J. Solid State Chem Vol. 180 (2007), p.1028.

Google Scholar

[24] T. Yoshida, M. Tochimoto, D. Schlettwein, D. Wohrle, T. Sugiura, H. Minoura: Chem. Mater Vol. 11 (1999), p.2657.

Google Scholar