Optimization and Springback Control of Ultra-High Strength Steel Door Beam Forming Process

Article Preview

Abstract:

The door beam inside the car door is an key component to improve the security of passengers, most great automobile manufacturing companies use ultra-high strength steel plate to manufacture it,however, it is very difficult to form in room temperature,so commonly it is made by hot stamping but the cost is too high. This article gives a solution to deal with this problem by the use of FEM software in simulating and optimizing the forming process of one kind of ultra-high strength steel door beam in room temperature, and main study is in the influence of temperature on internal organization changes of the ultra-high strength sheet and springback by comparing the simulation result and real sample, and meanwhile convex roofs are added in the addendum to optimize the surface. It is helpful on how to design die face in manufacturing the related ultra-high strength steel parts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 154-155)

Pages:

1033-1039

Citation:

Online since:

October 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Maki, S., Harada, Y., Mori, K., 2003, Sinter-Joining of Different Metal Powder Compacts Using Resistance Heating, Journal of Materials Processing Technology, 143-144: 561-566.

DOI: 10.1016/s0924-0136(03)00361-3

Google Scholar

[2] Yukihisa Kuriyama,Manabu Takahashi Hiroshi Ohashi. Trend of Car Weight Reduction Using High-strength Steel. ,2001,55(4):51-57.

Google Scholar

[3] Stander, N.; Roux, W.; Eggleston, T.; Craig, K.: A Design Optimization and Probabilistic Analysis Tool for the Engineering Analyst, LS-OPT User`s Manual Version 3. 1 (2006).

Google Scholar

[4] P. Choquet,P. Fabregue,J. Giusti,B. Chamont J.N. Pezant, and F. Blanchet: in Mathematical Modelling of Hot Rolling of Steels,S. Yue ed., The Metallurgical Society of CIM , Montreal , pp.34-43.

Google Scholar

[5] Siegert, K., Jager, S., Vulcan, M., 2003, Pneumatic Bulging of Magnesium AZ 31 Sheet Metals at Elevated Temperatures, Annals of the CIRP, 52/1: 241-244.

DOI: 10.1016/s0007-8506(07)60575-7

Google Scholar

[6] IPPC: Climate Change 2007: The Physical Science Basis. Intergovernmental Panel on Climate Change. Climate assessment report of the United Nations, Geneva, Switzerland, (2007).

DOI: 10.1017/cbo9781107415324

Google Scholar

[7] Maki, S., Shibata, T., Mori, K., Makino, H., 2004, Mushy State Forging of Aluminum Alloy Using Resistance Heating, Steel Grips, 2: 71 1-716.

Google Scholar

[8] Doege, E., Kurz, G., 2001, Development of a Formulation to Describe the Work Softening Behaviour of Magnesium Sheets for Heated Deep Drawing Processes, Annals of the CIRP, 50/1: 177-180.

DOI: 10.1016/s0007-8506(07)62099-x

Google Scholar

[9] Burkhardt, L.: Simulation des Warmumformprozesses auf Basis der Identifikation einflussreicher Parameter, Dissertation, ETH Zürich (2008).

Google Scholar

[10] Burkhardt L., Grigo B., Griesbach B.: Simulation des Warmumformprozesses auf Basis der Identifikation einflussreicher Paramter. In: 1. Erlanger Workshop Warm-blechumformung, 31-45, (2006).

Google Scholar

[11] Kerausch M., Schönbach T.: FE-basierte Prozessaus-legung mit AutoForm-HotForming. In: 2. Erlanger Workshop Warmblechumformung, 59-70, (2007).

Google Scholar

[12] Sikora, S.; Lenze, F. -J.: Hot-Forming-Process Important Parameters for the Production of High-Strength BIW Parts. IDDRG 2006, Porto, 295-301.

Google Scholar

[13] Kleiner, M., Geiger, M., Klaus, A, 2003, Manufacturing of Lightweight Components by Metal Forming, Annals of the CIRP, 52/2: 521-542.

DOI: 10.1016/s0007-8506(07)60202-9

Google Scholar

[14] Abedrabbo, N., Pourboghrat, F., Carsley, J.: Forming of aluminum alloys at elevated temperatures –Part 1: Material characterization. Int. J. Plasticity 22 (2): 314-341, (2006).

DOI: 10.1016/j.ijplas.2005.03.005

Google Scholar