Preparation of High-Purity Nanometer Bismuth Trioxide from Silver-Zinc Slag

Article Preview

Abstract:

Silver-zinc slag, containing a lot of Bi, Ag, Cu, Zn, Pb and a little Au, has high comprehensive utilization value. This paper describes a preparation method of high-purity nanometer bismuth trioxide (Bi2O3) from silver-zinc slag by hydrometallurgical method. The results showed that Bi could be effectively leached out from silver-zinc slag using sodium chlorate, hydrochloric acid and sodium chloride as leaching agents, and the leaching rate of Bi was up to 99.03% under the optimum conditions. The contents of Pb2+ and Ag+ in BiCl3 solution could be reduced to about 1mg/L by using silver-zinc slag as reductant and sodium iodide (NaI) as precipitant, respectively. Crystalline form of Bi2O3 is affected greatly by concentration of NaOH, conversion temperature and time. The suitable temperature of BiOCl converting to Bi2O3 was 90 , and the suitable surfactant was polyvinyl alcohol. The average particle size of Bi2O3 obtained was about 86 nm, the purity of Bi2O3 was up to 99.75%, and the yield was 98.21%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Pages:

785-793

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Q. Gong, J. S. Li, Y. J. Zheng, W. X. Yang: Journal of Central South University of Technology Vol. 34 (2003), p.506 ( In Chinese ).

Google Scholar

[2] C. W. Li: Non-ferrous Smelting Vol. 27 (1998), p.9 ( In Chinese ).

Google Scholar

[3] Z. Q. Xia, G. Zhang: Conservation and Utilization of Mineral Resources Vol. 20 (2000), p.43 ( In Chinese ).

Google Scholar

[4] Y. Z. Zhao, J. C. Zhu, Q. J. Li, J. Y. Zhou: Journal of Guangdong Non-ferrous Metals Vol. 5 (1995), p.126 ( In Chinese ).

Google Scholar

[5] M. T. Tang, J. L. Lu: Journal of Central South University of Technology Vol. 26 (1995), p.186 ( In Chinese ).

Google Scholar

[6] Z. Kelly, and F. Ojebuoboh: JOM Vol. 54 (2002), p.42.

Google Scholar

[7] F. K. Ojebuoboh: JOM Vol. 44 (1992), p.46.

Google Scholar

[8] L. Armelao, P. Colombo, and M. Fabrizio: Journal of Sol-Gel Science and Technology Vol. 13 (1998), p.213.

Google Scholar

[9] G. Bandoli, D. Barreca, E. Brescacin, G.A. Rizzi and E. Tondello: Chem. Vap. Deposition Vol. 2 (1996), p.238.

DOI: 10.1002/cvde.19960020605

Google Scholar

[10] P. Sulcova and M. Trojan: J. Therm. Anal. Vol. 60 (2000), p.209.

Google Scholar

[11] P. Suk, H. D. Wiemhofer, U. Guth, W. Gopel and M. Greenblatt: Solid State Ionics Vol. 89 (1996), p.179.

Google Scholar

[12] O. Monnereau, L. Tortet, P. Llewellyn, F. Rouquerol and G. Vacquier: Solid State Ionics Vol. 157 (2003), p.163.

Google Scholar

[13] J. Krüger, P. Winkler, E. Lüderitz, M. Lück and H. U. Wolf, in: Bismuth, Bismuth Alloys, and Bismuth Compounds", in Ullmann, s Encyclopedia of Industrial Chemistry. Wiley–VCH Verlag GmbH, Weinheim, (2000).

DOI: 10.1002/14356007.a04_171

Google Scholar

[14] J. A. Switzer, M. G. Shumsky and E. W. Bohannan: Science Vol. 284 (1999), p.293.

Google Scholar

[15] V. K. Larin, V. M. Kondakov, E. N. Malyi: Izvestiya Vysshi Uehebnykh Zavedenii, Tsvetnaya Metallurgiya Vol. 5 (2003), p.59.

Google Scholar

[16] L. Mädler and S. E. Pratsinis: J. Am. Ceram. Soc. Vol. 85 (2002), p.1713.

Google Scholar

[17] E. S. M. Samy and S. T. Li: Proc SPIE-Int Soc Opt Eng [C] Vol. 3123 (1997), p.98.

Google Scholar

[18] H. O. Jungk and C. Feldmann: J Matel Sci Vol. 36 (2001), p.297.

Google Scholar

[19] J. C. Yu, A.W. Xu, L. Z. Zhang, R. Q. Song and L. Wu: J. Phys. Chem. B Vol. 108 (2004), p.64.

Google Scholar

[20] J. C. Zhu, Y. Z. Zhao, Q. J. Li and J. Y. Zhou: Journal of Guangdong Non-ferrous Metals Vol. 5 (1995), p.50 ( In Chinese ).

Google Scholar