Ethanol Vapor-Induced Morphology and Structure Change of Silk Fibroin Nanofibers

Article Preview

Abstract:

In this study, regenerated silk fibroin (RSF, from Bombyx mori) nanofibers with smooth surface had been successfully prepared via electrospinning, as shown by SEM and then as-spun fibers were induced under 75% ethanol vapor. We aimed to investigate the morphology and structure change of 75% ethanol vapor-induced silk fibroin nanofibers. To determine any difference in surface topographies, the nanofibers were inspected using atomic force microscope (AFM) and the results showed that after inducement of 75% ethanol vapor for 24 h, the surface of fibers became rough. Differential Scanning Calorimetry (DSC) analysis indicated that electrospun SF nanofibrous membranes typically took silk I form and 75% ethanol vapor-induced SF nanofibrous membranes took silk II structure. These results suggested that 75% ethanol vapor inducement could be an attractive alternative to expand the application of RSF.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1165-1169

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. M Min, G. Lee, S. H. Kim, Y. S. Nam, T.S. Lee, W.H. Park: Biomaterials Vol. 25 (2004), p.1289.

Google Scholar

[2] B. Panilaitis, G.H. Altman, J.S. Chen, H.J. Jin, V. Karageorgiou, D.L. Kaplan: Biomaterials Vol. 24 (2003), p.3079.

DOI: 10.1016/s0142-9612(03)00158-3

Google Scholar

[3] L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. Mccool, G. Gronowicz, et al: Biomaterials Vol. 26 (2005), p.147.

DOI: 10.1016/j.biomaterials.2004.02.047

Google Scholar

[4] M. Santin, A. Motta, G. Freddi, M. Cannas: J Biomed. Mater Res Vol. 46 (1999), p.382.

Google Scholar

[5] H.J. Jin, J.S. Chen, V. Karageorgiou, G.H. Altman, D.L. Kaplan: Biomaterials Vol. 25 (2004), p.1039.

Google Scholar

[6] L. Uebersax, D.E. Fedele, C. Schumacher, D.L. Kaplan, H.P. Merkle, D. Boison, et al: Biomaterials Vol. 27 (2006), p.4599.

DOI: 10.1016/j.biomaterials.2006.04.025

Google Scholar

[7] M. Li, M. Ogiso, N. Minoura: Biomaterials Vol. 24 (2003), p.357.

Google Scholar

[8] R.L. Horan, K. Antle, A.L. Collette, Y.Z. Wang, J. Huang, J.E. Moreau, et al: Biomaterials Vol. 26 (2005), p.3385.

Google Scholar

[9] S. Ramakrishna, K.Z.T.S. Fujihara, W.E. Teo, T. Yong, Z.W. Ma, R. Ramaseshan: Mater. Today Vol. 9 (2006), p.40.

Google Scholar

[10] H.J. Jin, S.V. Fridrikh, G.C. Rutledge, D.L. Kaplan: Biomacromolecules Vol. 3 (2002), p.1233.

Google Scholar

[11] M. Wang, H.J. Jin, D.L. Kaplan, G.C. Rutledge: Macromolecules Vol. 37 (2004), p.6856.

Google Scholar

[12] K. Ohgo, C. Zhao, M. Kobayashi, T. Asakura: Polymer Vol. 44 (2003), p.841.

Google Scholar

[13] S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park: J Polym. Vol. 35 (2003), p.185.

Google Scholar

[14] K.H. Zhang, X.M. Mo, C. Huang, C.L. He, H.S. Wang: J Biomed Mater Res. Vol. 93A (2010), p.976.

Google Scholar

[15] A.S. Andersson, F. Backhed, A.V. Euler, et al: Biomaterials Vol. 24 (2003), p.3427.

Google Scholar

[16] A.I. Teixeira , P.F. Nealey, C.J. Murphy: J Biomed Mater Res. PartA Vol., Vol. 71A (2004), p.369.

Google Scholar

[17] S. Rahul, G. Stephanopoulos, D.I.C. Wang: Biotechnol Bioeng Vol. 43 (1994), p.764.

Google Scholar

[18] J. Magoshi, Y. Magoshi, S. Nakamura, N. Kasai, M. Kakudo: J Polym Sci Poly Phys Ed Vol. 15 (1977), p.1675.

DOI: 10.1002/pol.1977.180150915

Google Scholar