Vulcanization Kinetics of Natural Rubber Coagulated by Microorganisms with Use of a Vulcameter

Article Preview

Abstract:

Kinetics of vulcanization of natural rubber coagulated by microorganisms (NR-m) was studied with the use of a vulcameter. In the induction period of vulcanization, the time t0 of NR-m is shorter than that of natural rubber coagulated by acid (NR-a), and the rate constant k1/a of NR-m are greater than that of NR-a. Both the curing periods of NR-m and NR-a consist of two stages. The first stage follows first-order reaction. The rate constants k2 of NR-m in the first stage are greater than that of NR-a at the same temperature, and so are the activation energy E2. The second stage (end stage of the curing period) does not follow first-order reaction, and the calculated reaction order n of NR-m is in the range of 0.82-0.85, and that of NR-a is in the range of 0.64-0.72. The rate constants k3 of the second stage for NR -m are greater than that of NR-a at the same temperature, and so is the activation energy E3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1181-1186

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Mitra, S. Chattopadhyay, Y. K. Bharadwaj, S. Sabharwal and A. K. Bhowrnick: Radiat. Phys. Chem Vol. 77(2008), p.630.

Google Scholar

[2] R. M. B. Moreno, M. Ferreira, P. D. Goncalves and L.H.C. Mattoso: Scientia Agricola Vol. 62(2005), p.122.

Google Scholar

[3] C.S. Woo, W.D. Kim and J.D. Kwon: Materials Science and Engeering Astructural Materials Properties Micr ostructure and Processing Vol. 483 (2008), p.376.

Google Scholar

[4] H. Angellier, S. Molina-Boisseau and A. Dufresne: Macromolecules Vol. 38 (2005), p.9161.

Google Scholar

[5] Z. F. Wang, Z. Peng, S. D. Li, H. Lin, K. X. Zhang, X. D. She and X. Fu: Compos. Sci. Technol. Vol. 69 (2009), p.1797.

Google Scholar

[6] S. D. Li, H. P. Yu, Z. Peng, C. S. Zhu and P. S. Li: J Appl Polym Sci Vol. 75 (2000), p.1339.

Google Scholar

[7] Z. Q. Zeng, H. P. Yu, Q. F. Wang and G. Lu: J Appl Polym Sci Vol. 109 (2008), p. (1944).

Google Scholar

[8] P. Y. Wang, H. L. Qian and H. P. Yu: J Appl Polym Sci Vol. 101 (2006), p.580.

Google Scholar

[9] P. Y Wang, Y. Chen, H. L. Qian and H. P. Yu: J Appl Polym Sci Vol. 105 (2007), p.3255.

Google Scholar

[10] P. Y. Wang, H. L. Qian, H. P. Yu and J. Chen: J Appl Polym Sci Vol. 88 (2003), p.680.

Google Scholar

[11] P. Y. Wang, H. L. Qian and H. P. Yu: J Appl Polym Sci Vol. 92 (2004), p.3260.

Google Scholar

[12] A. Y. Coran: Rubber Chem Technol Vol. 37 (1964), p.679.

Google Scholar

[13] A. Y. Coran: Rubber Chem Technol Vol. 37 (1964), p.689.

Google Scholar

[14] J.R.D. Marinho and Y. Tanaka: Journal of Rubber Research Vol. 2 (1999), p.231.

Google Scholar

[15] L. Bateman, Moore, M. Porter and B. Saville: In Chemistry and Physics of Rubber-Like Substance; Bateman, L., Ed.; Maclaren and Sons: London, 1963; Chapter 15.

Google Scholar

[16] N. J. Morrison and M. Dorter: Rubber Chem Technol Vol. 57 (1984), p.63.

Google Scholar

[17] M. R. Krejsa and J. L. Koenig: Rubber Chem Technol Vol. 66 (1993), p.376.

Google Scholar