Fabrication, Characterization and Adsorptive of Human Fibrinogen of HA/PHBV Nano Composite Films

Article Preview

Abstract:

In this investigation, nano-scale hydroxyapatite (HA) particles were incorporated in poly(hydroxybutyrate-co-valerate) (PHBV) polymer to fabricate composite films using solvent casting method. The morphologies, mechanical properties and adsorptive of human fibrinogen of the composite films were investigated. The HA nano-particles were dispersed in the films and well bonded to the polymer. The strength of films could be enhanced and its adsorptive of human fibrinogen could be also improved greatly by introducing HA nano-particles into the films. The results suggested these newly developed nano-HA/PHBV composite films might serve as an effective biomedicine material.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1325-1330

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sodian, R., S. Hoerstrup, et al. Evaluation of Biodegradable, Three-Dimensional Matrices for Tissue Engineering of Heart Valves., Asaio Journal , 2000, 46(1): 107-110.

DOI: 10.1097/00002480-200001000-00025

Google Scholar

[2] Iordanskii, A. L., P. P. Kamaev, et al. Immobilization influence on the water sorption and diffusion in poly(3-hydroxybutyrate)., Journal of Applied Polymer Science , 1999, 73(6): 981-985.

DOI: 10.1002/(sici)1097-4628(19990808)73:6<981::aid-app16>3.0.co;2-y

Google Scholar

[3] Sendil, D., I. Gürsel, et al. Antibiotic release from biodegradable PHBV microparticles., Journal of Controlled Release, 1999, 59(2): 207-217.

DOI: 10.1016/s0168-3659(98)00195-3

Google Scholar

[4] Torun Köse, G., S. Ber, et al. Poly(3-hydroxybutyric acid-co- 3-hydroxyvaleric acid) based tissue engineering matrices., Journal of Materials Science: Materials in Medicine , 2003, 14(2): 121-126.

Google Scholar

[5] Tesema, Y., D. Raghavan, et al. Bone cell viability on collagen immobilized poly (3-hydroxybutrate-co-3-hydroxyvalerate) membrane: Effect of surface chemistry., Journal of Applied Polymer Science, 2004, 93(5): 2445-2453.

DOI: 10.1002/app.20787

Google Scholar

[6] LeGeros, R. Properties of osteoconductive biomaterials: calcium phosphates., Clin Orthop Relat Res, 2002, 395: 81-98.

DOI: 10.1097/00003086-200202000-00009

Google Scholar

[7] Kurashina, K., H. Kurita, et al. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits., Biomaterials, 2002, 23(2): 407-412.

DOI: 10.1016/s0142-9612(01)00119-3

Google Scholar

[8] Fathi, M. H. and A. Hanifi. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method., Materials Letters, 2007, 61(18): 3978-3983.

DOI: 10.1016/j.matlet.2007.01.028

Google Scholar

[9] Kim, W., Q. Zhang, et al. Mechanochemical synthesis of hydroxyapatite from Ca(OH)2-P2O5 and CaO-Ca(OH)2-P2O5 mixtures., Journal of Materials Science, 2000, 35(21): 5401-5405.

DOI: 10.3390/nano10112232

Google Scholar

[10] Tas, A. C. Combustion synthesis of calcium phosphate bioceramic powders., Journal of the European Ceramic Society, 2000, 20(14-15): 2389-2394.

DOI: 10.1016/s0955-2219(00)00129-1

Google Scholar

[11] Tas, A. C. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids., Biomaterials, 2000, 21(14): 1429-1438.

DOI: 10.1016/s0142-9612(00)00019-3

Google Scholar

[12] López-Macipe, A., R. Rodríguez-Clemente, et al. Wet Chemical Synthesis of Hydroxyapatite Particles from Nonstoichiometric Solutions., Journal of Materials Synthesis and Processing, 1998, 6(1): 21-26.

Google Scholar

[13] Huang, L. -Y., K. -W. Xu, et al. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings., Journal of Materials Science: Materials in Medicine, 2000, 11(11): 667-673.

Google Scholar

[14] Wenjian, W. and J. L. Baptista. Alkoxide route for preparing hydroxyapatite and its coatings., Biomaterials, 1998, 19(1-3): 125-131.

DOI: 10.1016/s0142-9612(97)00177-4

Google Scholar

[15] Yoshimura, M., H. Suda, et al. Hydrothermal synthesis of biocompatible whiskers., Journal of Materials Science, 1994, 29(13): 3399-3402.

DOI: 10.1007/bf00352039

Google Scholar

[16] Lim, G., J. Wang, et al. Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant., Journal of Materials Chemistry, 1999, 9(7): 1635-1639.

DOI: 10.1039/a809644i

Google Scholar

[17] Zhou, Y. X., B. Liu, et al. Preparation of Nano-hydroxyapatite in Impinging Stream Reactor., Chemistry & Bioengineering, 2007, 24(06): 15-17.

Google Scholar

[18] Witte, F., F. Feyerabend, et al. Biodegradable magnesium -hydroxyapatite metal matrix composites., Biomaterials, 2007, 28(13): 2163-2174.

DOI: 10.1016/j.biomaterials.2006.12.027

Google Scholar

[19] Ge, Z., Baguenard, A.S., Lim, L.Y., Wee, A., Khor, E. Hydroxyapatite -chitin materials as potential tissue engineered bone substitute, Biomaterials, 2004, 25: 1049-1058.

DOI: 10.1016/s0142-9612(03)00612-4

Google Scholar

[20] Kaito, T., A. Myoui, et al. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG /hydroxyapatite composite., Biomaterials, 2005, 26(1): 73-79.

DOI: 10.1016/j.biomaterials.2004.02.010

Google Scholar

[21] Tezcaner, A., K. Bugra, et al. Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films., Biomaterials, 2003, 24(25): 4573-4583.

DOI: 10.1016/s0142-9612(03)00302-8

Google Scholar

[22] Song, L., J. Meng, et al. Human fibrinogen adsorption onto single-walled carbon nanotube films., Colloids and Surfaces B: Biointerfaces, 2006, 49(1): 66-70.

DOI: 10.1016/j.colsurfb.2005.12.003

Google Scholar

[23] Wang, Y., X. Wang, et al. Fabrication, characterization and long-term in vitro release of hydrophilic drug using PHBV/HA composite microspheres., Materials Letters, 2007, 61(4-5): 1071-1076.

DOI: 10.1016/j.matlet.2006.06.062

Google Scholar