[1]
Sodian, R., S. Hoerstrup, et al. Evaluation of Biodegradable, Three-Dimensional Matrices for Tissue Engineering of Heart Valves., Asaio Journal , 2000, 46(1): 107-110.
DOI: 10.1097/00002480-200001000-00025
Google Scholar
[2]
Iordanskii, A. L., P. P. Kamaev, et al. Immobilization influence on the water sorption and diffusion in poly(3-hydroxybutyrate)., Journal of Applied Polymer Science , 1999, 73(6): 981-985.
DOI: 10.1002/(sici)1097-4628(19990808)73:6<981::aid-app16>3.0.co;2-y
Google Scholar
[3]
Sendil, D., I. Gürsel, et al. Antibiotic release from biodegradable PHBV microparticles., Journal of Controlled Release, 1999, 59(2): 207-217.
DOI: 10.1016/s0168-3659(98)00195-3
Google Scholar
[4]
Torun Köse, G., S. Ber, et al. Poly(3-hydroxybutyric acid-co- 3-hydroxyvaleric acid) based tissue engineering matrices., Journal of Materials Science: Materials in Medicine , 2003, 14(2): 121-126.
Google Scholar
[5]
Tesema, Y., D. Raghavan, et al. Bone cell viability on collagen immobilized poly (3-hydroxybutrate-co-3-hydroxyvalerate) membrane: Effect of surface chemistry., Journal of Applied Polymer Science, 2004, 93(5): 2445-2453.
DOI: 10.1002/app.20787
Google Scholar
[6]
LeGeros, R. Properties of osteoconductive biomaterials: calcium phosphates., Clin Orthop Relat Res, 2002, 395: 81-98.
DOI: 10.1097/00003086-200202000-00009
Google Scholar
[7]
Kurashina, K., H. Kurita, et al. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits., Biomaterials, 2002, 23(2): 407-412.
DOI: 10.1016/s0142-9612(01)00119-3
Google Scholar
[8]
Fathi, M. H. and A. Hanifi. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method., Materials Letters, 2007, 61(18): 3978-3983.
DOI: 10.1016/j.matlet.2007.01.028
Google Scholar
[9]
Kim, W., Q. Zhang, et al. Mechanochemical synthesis of hydroxyapatite from Ca(OH)2-P2O5 and CaO-Ca(OH)2-P2O5 mixtures., Journal of Materials Science, 2000, 35(21): 5401-5405.
DOI: 10.3390/nano10112232
Google Scholar
[10]
Tas, A. C. Combustion synthesis of calcium phosphate bioceramic powders., Journal of the European Ceramic Society, 2000, 20(14-15): 2389-2394.
DOI: 10.1016/s0955-2219(00)00129-1
Google Scholar
[11]
Tas, A. C. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids., Biomaterials, 2000, 21(14): 1429-1438.
DOI: 10.1016/s0142-9612(00)00019-3
Google Scholar
[12]
López-Macipe, A., R. Rodríguez-Clemente, et al. Wet Chemical Synthesis of Hydroxyapatite Particles from Nonstoichiometric Solutions., Journal of Materials Synthesis and Processing, 1998, 6(1): 21-26.
Google Scholar
[13]
Huang, L. -Y., K. -W. Xu, et al. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings., Journal of Materials Science: Materials in Medicine, 2000, 11(11): 667-673.
Google Scholar
[14]
Wenjian, W. and J. L. Baptista. Alkoxide route for preparing hydroxyapatite and its coatings., Biomaterials, 1998, 19(1-3): 125-131.
DOI: 10.1016/s0142-9612(97)00177-4
Google Scholar
[15]
Yoshimura, M., H. Suda, et al. Hydrothermal synthesis of biocompatible whiskers., Journal of Materials Science, 1994, 29(13): 3399-3402.
DOI: 10.1007/bf00352039
Google Scholar
[16]
Lim, G., J. Wang, et al. Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant., Journal of Materials Chemistry, 1999, 9(7): 1635-1639.
DOI: 10.1039/a809644i
Google Scholar
[17]
Zhou, Y. X., B. Liu, et al. Preparation of Nano-hydroxyapatite in Impinging Stream Reactor., Chemistry & Bioengineering, 2007, 24(06): 15-17.
Google Scholar
[18]
Witte, F., F. Feyerabend, et al. Biodegradable magnesium -hydroxyapatite metal matrix composites., Biomaterials, 2007, 28(13): 2163-2174.
DOI: 10.1016/j.biomaterials.2006.12.027
Google Scholar
[19]
Ge, Z., Baguenard, A.S., Lim, L.Y., Wee, A., Khor, E. Hydroxyapatite -chitin materials as potential tissue engineered bone substitute, Biomaterials, 2004, 25: 1049-1058.
DOI: 10.1016/s0142-9612(03)00612-4
Google Scholar
[20]
Kaito, T., A. Myoui, et al. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG /hydroxyapatite composite., Biomaterials, 2005, 26(1): 73-79.
DOI: 10.1016/j.biomaterials.2004.02.010
Google Scholar
[21]
Tezcaner, A., K. Bugra, et al. Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films., Biomaterials, 2003, 24(25): 4573-4583.
DOI: 10.1016/s0142-9612(03)00302-8
Google Scholar
[22]
Song, L., J. Meng, et al. Human fibrinogen adsorption onto single-walled carbon nanotube films., Colloids and Surfaces B: Biointerfaces, 2006, 49(1): 66-70.
DOI: 10.1016/j.colsurfb.2005.12.003
Google Scholar
[23]
Wang, Y., X. Wang, et al. Fabrication, characterization and long-term in vitro release of hydrophilic drug using PHBV/HA composite microspheres., Materials Letters, 2007, 61(4-5): 1071-1076.
DOI: 10.1016/j.matlet.2006.06.062
Google Scholar