Effects of Sputtering Parameters on the Properties of Sputtered ZnO Films

Article Preview

Abstract:

The ZnO films were deposited on quartz glass substrate by RF magnetron sputtering. The influences of the deposition power, the Ar/O2 ratio and the total press on the crystallinity of ZnO films were analyzed by X-ray diffraction. The results show that the films deposited at Ar/O2 ratio of 2:3 have better crystalline quality under our experimental conditions. The optimum power is about 120-160 W. The crystal structure was significantly influenced by the total pressure in the chamber. The total press should below 1 Pa in order to get high quality ZnO films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1541-1544

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. Chen, Y. Lu: Appl. Phys. Lett. Vol. 85 (2004), p.3702.

Google Scholar

[2] E. Fortunato, A. Goncalves, A. Marques, A. Pimentel, P. Barquinha, H. ´Aguas, L. Pereira, L. Raniero, G. Gonc¸alves, I. Ferreira, R. Martins: Mater. Sci. Forum. Vol. 514-516 (2006), p.3.

DOI: 10.4028/www.scientific.net/msf.514-516.3

Google Scholar

[3] Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, B. Li: Appl. Phys. Lett. Vol. 93 (2008), p.163501.

Google Scholar

[4] M. Pan, W. E. Fenwick, W. Strassburg, N. Li, H. Kang, M. H. Kane, A. Asghar, S. Gupta, R. Varatharajan, J. Nause, N. El-Zein, P. Fabiano, T. Steiner, I. Ferguson: J. Cryst. Gr. Vol. 287 (2006), p.688.

DOI: 10.1016/j.jcrysgro.2005.10.093

Google Scholar

[5] C. D. Bojorge, H. R. C´anepa, U. E. Gilabert, D. Silva, E. A. Dalchiele, R. E. Marotti: J. Mater. Sci: Mater. Electron. Vol. 18 (2007), p.1119.

Google Scholar

[6] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, L. D. Chen: Appl. Phys. L. Vol. 84 (2004), p.541.

Google Scholar

[7] A. Tsukazaki, A. Ohtomo, M. Kawasaki: Appl. Phys. Lett. Vol. 88 (2006), p.152106.

Google Scholar

[8] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. -J. Cho, H. Morkoc: J. Appl. Phys. Vol. 98 (2005), p.041301.

Google Scholar

[9] O. Kappertz, R. Drese, M. Wutting: J. Vac. Sci. Technol. A Vol. 20 (2002), p.2084.

Google Scholar

[10] Y. Hu, Y. Q. Chen, Y. C. Wu, M. J. Wang, G. J. Fang, C. Q. He, S. J. Wang: Appl. Surf. Sci. Vol. 255 (2009), p.9279.

Google Scholar

[11] N. A. Svorova, I. O. Usov, L. Stan, R. F. DePaula, A. M. Dattelbaum, Q. X. Jia, A. A. Suvorova: Appl. Phys. Lett. Vol. 92 (2008), p.141911.

DOI: 10.1063/1.2896642

Google Scholar

[12] P. -T. Hsieh, Y. -C. Chen, K. -S. Kao, C. -M. Wang: Phys. B Vol. 403 (2008), p.178.

Google Scholar

[13] J. -H. Jou, M. -Y. Han, D. -J. Cheng: J. Appl. Phys. Vol. 71 (1992), p.4333.

Google Scholar

[14] J. Hinze, K. Ellmer: J. Appl. Phys. Vol. 88 (2000), p.2443.

Google Scholar

[15] S. H. Bae, S. Y. Lee, H. Y. Kim, S. Im: Appl. Surf. S. Vol. 168 (2000), p.332.

Google Scholar

[16] K. B. Sundaram, A. Khan: Thin Sol. Fi. Vol. 295 (1997), p.87.

Google Scholar

[17] B. Y. Man, H. Z. Xi, C. S. Chen, M. Liu, J. Wei: Cent. Eur. J. Phys. Vol. 6 (2008), p.643.

Google Scholar

[18] W. Gao, Z. Li: Ceram. Int. Vol. 30 (2004), p.1155.

Google Scholar