Characterization on Propylene Oxide Polymerization with In Situ FT-IR

Article Preview

Abstract:

In-situ FT-IR technique is used to investigate the polymerization of propylene oxide with potassium t-butoxide as initiator. The epoxy absorbance at 828 cm-1 is the most useful peaks to monitor the reaction. The absorbance of C-O-C stretching vibration at 1107 cm-1 is very strong and also very useful. Yet, the absorbance of C-H stretching vibration in 3000~2800 cm-1 region is very weak and not reliable for In-situ FT-IR analysis. By monitoring the consumption of propylene oxide, the polymerization rate constant k at 33°C was calculated out and an interesting auto acceleration phenomenon was discovered. Moreover, the chain-transfer process was analyzed by measuring the formation of C=C double bonds, which clarified a former confusion about the course of propylene oxide rearrangement.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

60-64

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. J. Flory: Journal of the American Chemical Society Vol. 62(1940), p.1561.

Google Scholar

[2] L. E. St. Pierre and C. C. Price: Journal of the American Chemical Society Vol. 78(1956), p.34.

Google Scholar

[3] J. F. Ding, C. Price and C. Booth: European Polymer Journal Vol. 27(1991), p.891.

Google Scholar

[4] J. F. Ding, F. Heatley, C. Price and C. Booth: European Polymer Journal Vol. 27(1991), p.895.

Google Scholar

[5] H. Desai, A. V. Cunliffe, M. J. Stewart and A. J. Amass: Polymer Vol. 34(1993), p.642.

Google Scholar

[6] P. Kubisa and S. Penczek: Progress in Polymer Science Vol. (24)1999, p.1409.

Google Scholar

[7] J. Hofman and P. Gupta: EP patent 855417 (1998).

Google Scholar

[8] Z. Jedliński, J. Kasperczyk and A. Dworak: European Polymer Journal Vol. 19(1983), p.899.

Google Scholar

[9] W. Kuran and E. Mazanek: Journal of Organometallic Chemistry Vol. (384)1990, p.13.

Google Scholar

[10] O. W. Webser: Science Vol. 251(1991), p.887.

Google Scholar

[11] H. C. Malcolm and N. L. Diana: Macromolecules Vol. 35(2002), p.2389.

Google Scholar

[12] C. B. yrille, C. Stéphane, D. Philippe and D. Alain: Macromolecules Vol. (37)2004, p.4038.

Google Scholar

[13] M. R. Kamal: Polymer Engineering and Science Vol. 14(1974), p.231.

Google Scholar

[14] F. G. Mussatti: PhD Thesis, University of Minnesota (1975).

Google Scholar

[15] Z. Y. Zhang, Y. H. Huang and B. Liao: Chemical Journal of Chinese Universities Vol. 23(2002), p.974.

Google Scholar

[16] W. M. Yang, H. Q. Wang and X. J. Huang: Acta Polymerica Sinica Vol. 24(1993), p.456.

Google Scholar

[17] L. Z. Wu, A. F. Yu, M. Zhang and L. B. Chen: Acta Polymerica Sinica Vol. 34(2003), p.871.

Google Scholar

[18] X. W. Zhu, P. F. Yang, J. Y. Li and T. D. Li: Polymer Materials Science and Engieering Vol. 26 (2010), p.15.

Google Scholar

[19] E. C. Steiner, R. R. Pelletier and R. O. Trucks: Journal of the American Chemical Society Vol. 86(1964), p.4678.

Google Scholar

[20] D. M. Simons and J. J. Verbanee: Journal of Polymer Science Vol. 44(1960), p.303.

Google Scholar

[21] G. Gee, W. C. E. Higginson, K. J. Taylor and M. W. Trenholme: Journal of Chemical Soceity 1961, 4298.

Google Scholar