Tribological Properties of Cu Based Friction Composites with In Situ Synthesized TiC Filler

Article Preview

Abstract:

The Cu based friction composites using graphite as solid lubricant with different weight rations of Ti, i.e. 8 wt.%, 12 wt.%, 16 wt.%, 20 wt.%, were sintered by powder metallurgy (P/M) method. The structure of the composites was characterized by X-ray diffraction (XRD) and the tribological properties was studied on block-on-ring tester. XRD results verified presence of TiC phase which was in-situ synthesized through reaction of Ti and graphite in the composites, and the content of TiC was increased with the increased Ti content. The in-situ synthesized TiC phase which was fine and distributed uniformly improved tribological properties of Cu based friction composites significantly. The hardness, wear rates and friction coefficient of composites were increased with increasing amount of in-situ synthesized TiC.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

35-47

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhan, G. Zhang: Tribo. Lett. Vol. 17 (2004), p.91.

Google Scholar

[2] S.C. Tjong, K.C. Lau: Mater. Sci. Eng. A Vol. 282 (2000), p.183.

Google Scholar

[3] J.Y. Wu, Y.C. Zhou, J. Y. Wang: Mater. Sci. Eng. A Vol. 422 (2006), p.266.

Google Scholar

[4] P.K. Deshpande, R.Y. Lin: Mater. Sci. Eng. A Vol. 418 (2006), p.137.

Google Scholar

[5] I. Gotman, M.J. Koczak, E. Shetessel: Mater. Sci. Eng. A Vol. 187 (1994), p.189.

Google Scholar

[6] A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, Y.R. Mahajan: Scripta. Metall. Mater. Vol. 24 (1990), p.873.

Google Scholar

[7] M.G. Chu, M.K. Premkumar: Metall. Trans. A Vol. 24 (1993), p.2803.

Google Scholar

[8] Z.Y. Ma, S.C. Tjong: Metall. Mater. Trans. A Vol. 28 (1997), p. (1931).

Google Scholar

[9] Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.Y. Wang, Q.C. Jiang: J. Alloys Compd. Vol. 452 (2008), p.298.

Google Scholar

[10] Z.G. Liu, J.T. Guo, L.L. Ye, G.S. Li, Z.Q. Hu: Appl. Phys. Lett. Vol. 65 (994), p.2666.

Google Scholar

[11] R. Koc, C. Meng, G.A. Swift: J. Mater. Sci. Vol. 35 (2000), p.3131.

Google Scholar

[12] M.S. El-Eskandarany: Metall. Mater. Trans. A Vol. 27 (1996), p.2374.

Google Scholar

[13] M.S. Song, M.X. Zhang, S.G. Zhang, B. Huang, J.G. Li: Mater. Sci. Eng. A Vol. 473 (2007), p.166.

Google Scholar

[14] Björn Winkler, Dan J. Wilson, Sven C. Vogel, Donald W, Brown, Thomas A. Sisneros, Victor Milman: J. Alloys Compod. Vol. 441 (2007), p.374.

Google Scholar

[15] C. Deidda, S. Doppiu, M. Monagheddu, G. Cocco: J. Metastable Nanocryst. Mater. Vol. 15-16 (2003), p.215.

Google Scholar

[16] M.S. El-Eskandarany: J. Alloys Compd. Vol. 305 (2000), p.225.

Google Scholar

[17] N. Zarrinfar, P.H. Shipway, A.R. Kennedy, A. Saidi: Scripta. Mater. Vol. 46 (2002), p.121.

Google Scholar

[18] Y.J. Kwon, M. Kobashi, T. Choh, N. Kanetake: J. Jpn. Inst. Met. Vol. 65 (2001), p.273.

Google Scholar

[19] C.C. Leong, L. Lu, J.Y.H. Fuh, Y.S. Wong: Mater. Sci. Eng. A Vol. 338 (2002), p.81.

Google Scholar

[20] H.J. Song, Z.Z. Zhang, X. Men: Surf. Coat. Technol. Vol. 201 (2006), p.3767.

Google Scholar

[21] N.A. Waterman, M. Ashby, in: CRC-Elserier Materials Slector, vol. 1(1991), pp.383-390.

Google Scholar