Numerical Simulation of Quasi-Brittle Fracture in Concrete Structures with Extended Finite Element Method

Article Preview

Abstract:

In this paper, the extended finite element method (XFEM) is used for a discrete crack simulation of concrete using an adaptive crack growth algorithm. An interface model is proposed which includes normal and tangential displacements and allows the transfer of shear stresses through the interface. Different criteria for predicting the direction of the extension of a cohesive crack are conducted in the framework of the XFEM. On the basis of two examples, a comparison between the maximum circumferential stress criterion, the maximum energy release rate and the minimum potential energy criterion with experimental data has been carried out. The considered numerical simulations have confirmed the flexibility and effectiveness of the XFEM for the modelling of crack growth under general mode I and mixed-mode loading conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 163-167)

Pages:

1837-1843

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Oliver, A.E. Huespe: Comput. Methods Appl. Mech. Eng. Vol. 193 (2004), p.3195.

Google Scholar

[2] J.F. Unger, S. Eckardt, C. Könke: Comput. Methods Appl. Mech. Eng. Vol. 196 (2007), p.4087.

Google Scholar

[3] H. Qu, G. Chen: Adv. Mater. Res. Vol. 33-37 (2008), p.623.

Google Scholar

[4] H. Qu, P. Zhang: Adv. Mater. Res. Vol. 97-101 (2010), p.1227.

Google Scholar

[5] N. Moës, J. Dolbow, T. Belytschko: Int. J. Numer. Meth. Eng. Vol. 46 (1999), p.131.

Google Scholar

[6] I. Carol, M. Lopez, O. Roa: Int. J. Numer. Meth. Eng. Vol. 52 (2002), p.193.

Google Scholar

[7] N. Moës, T. Belytschko: Eng. Fract. Mech. Vol. 69 (2002), p.813.

Google Scholar

[8] T. Belytschko, N. Moës, S. Usui, C. Parimi: Int. J. Numer. Meth. Eng. Vol. 50 (2001), p.993.

Google Scholar

[9] V. Tvergaard: Eng. Fract. Mech. Vol. 70 (2003), p.1859.

Google Scholar

[10] Z. Yang: Mech. Res. Commun. Vol. 32 (2004), p.514.

Google Scholar

[11] G.N. Wells, L.J. Sluys: Int. J. Numer. Meth. Eng. Vol. 50 (2001), p.2667.

Google Scholar

[12] J. Oliver, A.E. Huespe: Comp. Meth. Appl. Mech. Eng. vol. 193 (2004), p.3195.

Google Scholar

[13] N. Moës, A. Gravouil, T. Belytschko: Int. J. Numer. Meth. Eng. Vol. 53 (2002), p.2549.

Google Scholar

[14] D.A. Cendón, J.C. Gálvez, M. Elices, J. Planas: Int. J. Fract. Vol. 103 (2000), p.293.

Google Scholar