Study of Constitution Relationship Model for Masonry under Axial Compression

Abstract:

Article Preview

Based on the study of the unclear mechanical behavior and failure mechanism of masonry components in high axial compression after Wenchuan Earthquake, the thesis analysis the failure mechanism of masonry in compression in microscopic hierarchy process level with the damage mechanics and probability and statistics method. Aimed at making up the shortage of that it is difficult for the previous constitution relationship model to identify the difference between the stress decrease of the material when loading during strain softening stage and the stress decrease of the material when unloading during the elastic stage, the thesis studies the constitution relationship model for masonry in strain space and describes the strain hardening and softening phenomena during the force process of the components with a uniform loading and unloading standard, and avoids the uncertain description on the strain softening stage. Approved by the experiments, the model can show the characters of the compressive masonry experiment, and give a reasonable explanation for the deformation principle of masonry in compression at the micro-level, also fit the experiment results well.

Info:

Periodical:

Advanced Materials Research (Volumes 168-170)

Edited by:

Lijuan Li

Pages:

762-767

DOI:

10.4028/www.scientific.net/AMR.168-170.762

Citation:

W. Liu et al., "Study of Constitution Relationship Model for Masonry under Axial Compression", Advanced Materials Research, Vols. 168-170, pp. 762-767, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.