Concrete Study Using Infrared Thermography and Forced Resonant Frequency

Article Preview

Abstract:

The performance of materials made from Portland cement is usually evaluated by tensile strength under compression loads, elastic modulus and porosity. Modulus of elasticity is usually determined from compression tests, and the results show large dispersions. With the advances in data acquisition and signal processing, the infrared thermography and forced resonant frequency have been increasingly used in the study of materials. However, these studies are devoted almost entirely to metals. In this paper it is evaluates the use of the method of forced longitudinal resonance frequency and infrared thermography as a tool for characterization of the buildings cementitious materials. The results show that thermography and forced resonant frequency are Able to detect changes in concrete macrostructure as well as the nature of its constituents.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 168-170)

Pages:

778-786

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] British Standard Institution, BS 1881: Part 201, Guide to the use of nondestructive methods of test for hardened concrete: London. 1986a.

Google Scholar

[2] Mehta PK, Monteiro PJM. Concreto: Microestrutura, propriedades e materiais. 3. ed. Editora: Ibracon (Instituto Brasileiro do Concreto) - SP. (2008).

Google Scholar

[3] Neville AM. Properties of concrete. New York: John Wiley & Sons, (1973).

Google Scholar

[4] American Society for Testing and Materials. ASTM C 215. Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. ASTM Committee C09 on Concrete and concrete Aggregates, (2002).

DOI: 10.1520/c0215

Google Scholar

[5] British Standards Institution, BS 1881: Part 209. Testing concrete. Recommendations for measurement of dynamic modulus of elasticity. London, (1990).

Google Scholar

[6] Malhotra VM, Carino NJ. CRC Handbook on Nondestructive Testing of Concrete, 1 ed., chapter 6, Boston, USA, CRC Press, (1991).

Google Scholar

[7] Coutinho, A.S.; Gonçalvez, A. Fabrico e propriedades do betão. Laboratório Nacional de Engenharia Civil, 2. ed, v. 3, Lisboa, (1994).

Google Scholar

[8] Bucher, H.R.E.; Rodrigues Filho, H.C. Argamassas de enxofre para capeamento de corpos-de-prova. Seminário Controle de Resistência do Concreto, Ibracon, São Paulo, (1983).

DOI: 10.14393/19834071.2015.28806

Google Scholar

[9] Carino, N.J.; Guthrie, W.F.; Lagergren, E.S. Effects of Testing Variables on the Measured Compressive Strength of High-Strength (90 MPa) Concrete. National Institute of Standards and Technology. NISTIR 5405, Gaithersburg, Md., Oct. (1994).

DOI: 10.6028/nist.ir.5405

Google Scholar

[10] Forstie, D.A.; Schnormeier, R. Development and use of 4 by 8 inch concrete cylinders in Arizona. Concrete International., v. 3, no. 7, July (1981).

Google Scholar

[11] Lima, F. B.; Barbosa, A. H. Influência do tamanho e do tipo do corpo-de-prova na resistência à compressão do concreto. 44° Congresso Brasileiro do Concreto, Anais.., Ibracon, Belo Horizonte, (2002).

DOI: 10.4322/2175-8182.62cbc022

Google Scholar

[12] Marco, F.F.; Reginatto, G.M.; Jacoski, C.A. Estudo comparativo entre capeamento de neoprene, enxofre e pasta de cimento para corpos-de-prova cilíndricos de concreto. 45° Congresso Brasileiro do Concreto, Anais.., Ibracon, Vitória, (2003).

DOI: 10.4322/2175-8182.62cbc005

Google Scholar

[13] Martins, F.I.R. Otimização dos Materiais para a Composição do Concreto de Alto Desempenho. 46º Congresso Brasileiro do Concreto, Anais.. Ibracon - Volume II - Construções em Concreto. CBC0164 - p. II. 1381 - II. 1395, Florianópolis. (2004).

DOI: 10.4322/2175-8182.62cbc018

Google Scholar

[14] Patnaik A.K.; Patnaikuni, I. Correlation of strength of 75 mm diameter and 100 mm diameter cylinders for high strength concrete. Cement and Concrete Research, v. 32, p.607–613, (2002).

DOI: 10.1016/s0008-8846(01)00729-3

Google Scholar

[15] Pires, T.A.C. Desempenho de laboratórios de controle tecnológico de concretos a partir de resultados de compressão interlaboratorial. 48º CONGRESSO BRASILEIRO DO CONCRETO CBC, Anais.., 2006. Ibracon. Rio de Janeiro. (2006).

DOI: 10.19146/pibic-2016-51057

Google Scholar

[16] Scandiuzzi, L.; Andriolo, F.R. Concreto e seus materiais: propriedades e ensaios. Pini, São Paulo, (1986).

Google Scholar

[17] Persson, B. Justification of Féderation international de Béton, fib, 2000 model for elastic modulus of normal and high-performance concrete, HPC. Cement and Concrete Research, v. 34, pp.651-655, (2004).

DOI: 10.1016/j.cemconres.2003.10.015

Google Scholar

[18] Clark MR, Mccann DM, Forde MC. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges,. NDT & E International Independent Nondestructive Testing and Evaluation 2003; 36 (4): 265-275.

DOI: 10.1016/s0963-8695(02)00060-9

Google Scholar

[19] Maldague, X.P. Applications of infrared thermography,. In: Nondestructive Evaluation, Terends in Optical Nondestrutive Testing (invited chapter), Pramod Rastogi Ed., pp.591-609, (2000).

DOI: 10.1016/b978-008043020-1/50040-5

Google Scholar

[20] Meola C et al. Application of infrared thermography and geophysical methods for defect detection in architectural structures,. Engineering Failure Analysis 2005; 12: 875–892.

DOI: 10.1016/j.engfailanal.2004.12.030

Google Scholar

[21] Meola C, Carlomagno GM. Recent advances in the use of infrared Thermography,. Institute of Physics Publishing Measurement Science and Technology 2004; 15: R27–R58.

DOI: 10.1088/0957-0233/15/9/r01

Google Scholar

[22] Tavares, S.G. Tese Desenvolvimento de uma metodologia para aplicação de ensaios não destrutivos na avaliação da integridade de obras de arte. Brasil. Universidade Federal de Minas Gerais, (2006).

DOI: 10.14393/19834071.v26.n2.2017.38910

Google Scholar

[23] Tavares SG, Cunha AM, Andrade RM. Ensaios térmicos não destrutivos para avaliação de defeitos e inclusões não aparentes em materiais,. 7º Congresso Iberoamericano de Ingenieria Mecânica 2005; octubre, (2005).

DOI: 10.11606/t.3.2014.tde-11082015-160035

Google Scholar

[24] Wiggenhauser, H. Active IR-applications in civil engineering,. Infrared Physics & Technology 2002, 43; p.233–238.

DOI: 10.1016/s1350-4495(02)00145-7

Google Scholar

[25] Rogalski A. Infrared detectors: an overview,. Journal of Alloys and Compounds 2004, 371: 53–57.

Google Scholar

[26] Pappalettere C. Corso di Meccanica Sperimentale Seminario sulla: Termografia. Dipartimento di Ingegneria Meccanica e Gestionale Bari, Itália. (2004).

Google Scholar

[27] Castanedo, C.I. "Quantitative subsurface defect valuation by pulsed phase thermography: Depth retrieval with the phase Thèse. Faculté des Sciences et de Génie Université Laval – Québec. Octobre (2005).

Google Scholar

[28] Maldague, X.P. Theory and practice of infrared technology for nondestructive testing, Wiley & Sons, Inc., New York, (2001).

Google Scholar

[29] Pelizzari E. Aplicações da Termografia como Ferramenta de Manutenção Preditiva em Conectores Elétricos,. 17º. Congresso Brasileiro de Engenharia e Ciência dos Materiais, (2006).

Google Scholar

[30] Weil GJ. Infrared thermographic techiniques. In: Malhotra, V.M.; Carino, N. J. (eds). CRC Handbook on Nondestructive Testing of Concrete, 1 ed., chapter 13, Boston, USA, CRC Press, (1991).

Google Scholar

[31] Branco, F.A.; Santos, J.R. Avaliação da espessura degradada em estruturas de betão sujeitas à acção do fogo. (FBTEST), (2000).

Google Scholar

[32] Chan, Y.N.; Peng, G.F.; Anson, M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement and Concrete Composites-23-27-Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, (1999).

DOI: 10.1016/s0958-9465(98)00034-1

Google Scholar

[33] Shields, T.J.; Silcock, G.W. Buildings and fire. Longman Scientific & Technical, (1987).

Google Scholar

[34] Cuoghi, R. S. Aspectos de análise de risco das estruturas de concreto em situação de incêndio. Dissertação (mestrado) – Engenharia de Construção Civil e Urbana. Escola Politécnica da Universidade de São Paulo. São Paulo (2006).

DOI: 10.11606/d.3.2006.tde-02042008-180545

Google Scholar

[35] Almeida, S. F. Análise dinâmica experimental da rigidez de elementos de concreto submetidos à danificação progressiva até a ruptura. Dissertação (Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, (2005).

DOI: 10.11606/d.18.2005.tde-20092005-183049

Google Scholar