EDC-Crosslinked Electrospun Silk-Fibroin Fiber Mats

Article Preview

Abstract:

Electrospun Silk-Fibroin (SF) mats were fabricated by electrospinning with regenerated Bombyx mori silk-fibroin/formic acid solutions. After spinning, the water soluble and mechanical properties of pure fibroin nanofibers were poor. So electrospun SF mats were crosslinked with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), a low cell cytotoxicity crosslinking agent, and N-hydroxysuccinimide (NHS), which can increase the reaction rate. The scanning electron microscope images indicated that the diameter of fibers increased with crosslinking reaction. When EDC/NHS reached to 7.5wt.%, the diameter of fibers achieved the maximum. The mechanical test showed that tensile strength enhanced after crosslinking with EDC/ NHS. While EDC/NHS reached to 7.5wt %, the rupture strength reached to (38.31±5.30) Mpa, and the breaking elongation ratio reached to (182.00±31.27) %. FTIR results showed the the proportion of β-sheet increased while random coil and α-helix decreased after treatment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 175-176)

Pages:

170-175

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nandana Bhardwaj and Subhas C. Kundu: Biotechnology Advances Vol. 28 (2010), p.325.

Google Scholar

[2] Z.M. Huang, Y.Z. Zhang, M. Kotaki and S. Ramakrishna: Compos Sci Technol Vol. 63 (2003) p.2223.

Google Scholar

[3] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian and X. Yang: J Control Release Vol. 92 (2003) p.227.

Google Scholar

[4] S. W. Ha, A. E. Tonelli and S. M. Hudson: Biomacromolecules Vol. 6 (2005), p.722.

Google Scholar

[5] M. Z. Li, W. Tao, S. Kuga, and Y. Nishiyama: Polym. Adv. Technol. Oxford Vol. 14 (2003), p.694.

Google Scholar

[6] KS Weadock and JA Goggins: J Long Term Effects Medical Implants Vol. 3 (1993), p.207.

Google Scholar

[7] Huang-Lee LLH, Cheung DT and Nimni ME: J Biomed Mater Res Vol. 24 (1990), p.1185.

Google Scholar

[8] MJA van Luyn, PB van Wachem, LHH OldeDamink, PJ Dijkstra and J Feijen: J Biomed Mater Res Vol. 26(1992), p.109.

Google Scholar

[9] PB van Wachem, MJA van Luyn, Damink LHH Olde, PJ Dijkstra, J Feijen and P Nieuwenhuis: Biomaterials Vol. 17 (1994), p.230.

DOI: 10.1016/0142-9612(96)81413-x

Google Scholar

[10] PB van Wachem, MJA van Luyn, Damink LHH Olde, PJ Dijkstra and P. Nieuwenhuis: J Biomed Mater Res Vol. 28 (1994), p.353.

DOI: 10.1002/jbm.820280310

Google Scholar

[11] Chen Xin, Zhou Li, Zhengzhong Shao, Ping Zhou , D. P. Knight, F. Vollrath: Acta Chimica Sinica Vol. 61 (2003), p.625.

Google Scholar

[12] K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim and S. W. J Choi: Polym. Sci., Part B. Vol. 41 (2003), p.1256.

Google Scholar

[13] R. B. Mathur, S. Pande, B. P. Singh and T. L Dhami: Polym. Compos. Vol. 29 (2008), p.717.

Google Scholar