Study on Improving Biodegradation Process of Regenerated Silk Fibroin Fiber

Article Preview

Abstract:

The native silk fibroin fiber from Bombyx mori has been used as suture with non-degradable character. Therefore, preparing biodegradable silk fibroin fiber is very attractive and important. In this paper, the biodegradable silk fibroin fiber with high strength was prepared according to the process of regenerated silk fibroin fiber from the 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solution and by adding calcium chloride CaCl2 to the silk fibroin solution. The degradation rate of the regenerated silk fibroin fibers was dependent on calcium chloride concentration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 175-176)

Pages:

266-271

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.R.E. Rossitch, D.E. Bullard, W.J. Oakes: Childs Nerv Syst Vol. 3(1987), p.375.

Google Scholar

[2] T.N. Salthouse, B.F. Matlaga, M.H. Wykoff: Am J Ophthalmol Vol. 84(1977), p.224.

Google Scholar

[3] T. Arai, G. Freddi, R. Innocenti, M. Tsukada: J Appl Polym Sci Vol. 91 (2004), p.2383.

Google Scholar

[4] M. Z. Li, M. Ogiso, N. Minoura: Biomaterials Vol. 24 (2003), p.357.

Google Scholar

[5] N. Minoura, M. Tsukada, M. Nagura: Biomaterials Vol. 11 (1990), p.430.

Google Scholar

[6] K.H. Lam, A. J. Nijenhuis, H. Bartels, A.R. Postema, M.F. Jonkman, A.J. Pennings, P. Nieuwenhuis: J Appl. biomater Vol. 6 (1995), p.191.

DOI: 10.1002/jab.770060308

Google Scholar

[7] A. Takayuki, F. Giuliano, I. Riccardo: Journal of Applied Polymer Science Vol. 91 (2004), p.2383.

Google Scholar

[8] D. Greenwald, S. Shumway, P. Albear, L.J. Gottlieb: Surg Res Vol. 56 (1994), p.372.

Google Scholar

[9] R. Kino, T. Ikoma, S. Yunoki, A. Monkawa, A. Matsuda, G. Kagata, T. Asakura, M. Munekata, J. Tanaka: Key Engineering Materials Vol. 309-311 (2006), p.1169.

DOI: 10.4028/www.scientific.net/kem.309-311.1169

Google Scholar

[10] A. Apap-Bologna, A. Webster, F. Raitt, G. Kemp: Biochim. Biophys. Acta Vol. 995 (1989), p.70.

Google Scholar

[11] H. Lilie, W. Haehnel, R. Rudolph, U. Baumann: FEBS Lett. Vol. 4 (2000), p.173.

Google Scholar

[12] K.A. McClintock, G. S. Shaw: J. Biol. Chem. Vol. 17 (2003), p.6251.

Google Scholar

[13] P. Zhou, X. Xie, D.P. Knight X.H. Zong: Biochemistry, Vol. 43 (2004), p.11302.

Google Scholar

[14] G.Y. Li, P. Zhou, Y. J. Sun, W. H. Yao, Y. Mi, H.Y. Yoa, Z.Z. Shao, T.Y. Yu: Chem J Chin Univ Vol. 2 (2001), p.860.

Google Scholar

[15] T. Asakura, H. Suzuki, Y. Watanabe: Macromolecules Vol. 16 (1983), p.1024.

Google Scholar

[16] T. Asakura, Y. Watanabe, T. Itoh: Macromolecules Vol. 17 (1984), p.2421.

Google Scholar

[17] C. Wong, E. Bini , J. Huang, D.L. Kaplan: Applied Physics A: Materials Science & Processing Vol. 82 (2006), p.193.

Google Scholar

[18] P. Taddei, P. Monti: Biopolymers Vol. 78(2007), p.249.

Google Scholar

[19] T. Lefevre, M.E. Rousseau, M. Pezolet: Biophysical journal Vol. 92(2007), p.2885.

Google Scholar