Optimization for Design of PID Controller Based on Improved PSO

Article Preview

Abstract:

A new algorithm which is the average local best position is presented to replace the local best of the traditional velocity update rule. One particle can acquire more messages of the other particles to adjust is movement in this method. Integrating PSO algorithm with PID controller, the three parameters of the PID controller can be optimized, which has the features of simple structure, easy implementation and robust performance. The simulation shows the PID controller integrated with the improved PSO algorithm achieved a good performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

571-576

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Akhyar and S. Omayu: Neuromorphic self-tuning PID controller, in: Proc. Of IEEE Internat. Conf. on Neural Networks, (1992), p.552.

DOI: 10.1109/icnn.1993.298617

Google Scholar

[2] S. Matsumura, S. Omatu and H. Higasa: Improvement of speed control performance using PID type neurocontroller in an electric vehicle system, in: Proc. Of IEEE Internat. Conf. on Neural Networks(1994), p.2649.

DOI: 10.1109/icnn.1994.374640

Google Scholar

[3] S. Tzafestas and N. P. Papanikolopoulos: Incremental fuzzy expert PID control. IEEE Trans. Indust. Electronics, Vol. 37(5)( 1990), p.365.

DOI: 10.1109/41.103431

Google Scholar

[4] Z. Y. Zhao, M. Tomizuka and S. Isaka: Fuzzy gain scheduling of PID controllers. IEEE Trans. System Man Cybernet. Vol. 23(5)( 1993), p.1392.

DOI: 10.1109/21.260670

Google Scholar

[5] A. Visioli: Tuning of PID controllers with fuzzy logic. Proc. Inst. Elect. Eng. Contr. Theory Applicant, Vol. 148(2001), p.1.

Google Scholar

[6] T. L. Seng, M. B. Khalid and R. Yusof: Tuning of a neuro-fuzzy controller by genetic algorithm. IEEE Trans. System Man Cybernet. B, Vol. 29(1999), p.226.

DOI: 10.1109/3477.752795

Google Scholar

[7] P. Wang and D. P. Kwok: Optimal design of PID controllers based on genetic algorithms. Control Engrg. Practice, Vol. 2(4)( 1994), p.641.

DOI: 10.1016/0967-0661(94)90008-6

Google Scholar

[8] b. Porter and A. H. Jones: Genetic tuning of digital PID controllers. Electronics Letters Vol. 28(1992), p.843.

DOI: 10.1049/el:19920533

Google Scholar

[9] T. Ota and S. Omatu: Tuning of the PID control gains by GA. in Proc. of IEEE Conf. on Emerging Technology and Factory Automation(1996), p.272.

DOI: 10.1109/etfa.1996.573305

Google Scholar

[10] J. Kennedy and R C. Eberhart: Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway, NJ: IEEE Press(1995), p. (1942).

Google Scholar

[11] R.C. Eberhart and J. Kennedy: A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan(1995), p.39.

DOI: 10.1109/mhs.1995.494215

Google Scholar

[12] Y Shi and R C. Eberhart: A modified optimizer. [A]. IEEE International Conference of Evolutionary Computation. [C]. Anchorage, Alaska: IEEE Press(1998), p.69.

Google Scholar

[13] Y Shi and R C. Eberhart: Parameter Selection in Particle Swarm Optimization [J]. Evolutionary Programming VII, Lecture Notes in Computer Science, Springer(1998), p.591.

DOI: 10.1007/bfb0040810

Google Scholar

[14] Y Shi and R C. Eberhart: Empirical study of particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary computation(1999), p. (1945).

DOI: 10.1109/cec.1999.785511

Google Scholar

[15] Y. Mitsukura, T. Yamamoto and M. Keneda: A design of self-tuning PID controllers using a genetic algorithm [J]. in Proc. Amer. Contr. Conf., San Diego, CA(1999), p.1361.

Google Scholar

[16] J. Kennedy and R. C. Eberhart: A discrete binary version of the particle swarm algorithm [A]. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics. Piscataway. NJ: IEEE Service Center(1997), p.4104.

DOI: 10.1109/icsmc.1997.637339

Google Scholar