A Novel Preconditioned Conjugate Gradient Image Reconstruction Algorithm for Electrical Capacitance Tomography System

Article Preview

Abstract:

To solve the‘soft-field’nature and the ill-posed problem in electrical capacitance tomography (ECT)technology, a novel preconditioned conjugate gradient algorithm for electrical capacitance tomography is presented. The analysis of the basic principles of electrical capacitance tomography, based on the given preconditioned conjugate gradient method and calculation formula of the iteration steps of the ECT and to explore the feasibility of application of the algorithm, the algorithm to meet the convergence conditions and the reconstruction image error. Experimental results and simulation data indicate that the algorithm can provide high quality images and favorable stabilization compared with LBP,conjugate gradient algorithms in simple flow pattern and this new algorithm presents a feasible and effective way to research on image reconstruction algorithm for Electrical Capacitance Tomography System.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

629-635

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Xie C G, Plaskowski, Beck M S. 8-electode capacitance system for two-component flow identification. Part 1: Tomographic flow imaging [J], IEE Proc A, 1989; 136(4): 173-190.

DOI: 10.1049/ip-a-2.1989.0031

Google Scholar

[2] Warsito W., Fan L. S, Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography(ECT)[J]. Chemical Engineering Science 2001, 56(6): 6455-6462.

DOI: 10.1016/s0009-2509(01)00234-2

Google Scholar

[3] W. q. Yang, Modeling of capacitance tomography sensors[J]. IEE Proc. Sci. Meas. Technol. 1997, 144: 203-220.

Google Scholar

[4] K.L. Ostrowski, S.P. Luke, R.A. Williams. Simulation of the performance of electrical capacitance tomography for muasurement of dense phase pneumatic conveying[J]. Chemical Engineering Journal, 1997, 6, 8197-8205.

DOI: 10.1016/s1385-8947(97)00095-8

Google Scholar

[5] B.T. Hjertaker. Static characterization of a dual sensor flow imaging system[J]. Flow Measurement and Instrumentation, 1998, 9183-191.

DOI: 10.1016/s0955-5986(98)00018-1

Google Scholar

[6] Liu S, Yang W Q, Wang H, Jiang F, Su Y. Investigation of square fluidized beds using capacitance tomography preliminary results[J]. Measurement Science and Technology, 2002, 12(8): 1120-1125.

DOI: 10.1088/0957-0233/12/8/318

Google Scholar

[7] Xi Shaolin, Zhao Fengzhi. Computation Methods for Optimization[D]. Shanghai: Shanghai Scientific & Technical Publishers. 1983: 74-95.

Google Scholar

[8] Yang W Q, Peng L H. Image reconstruction algorithms for electrical capacitance tomography[J]. Meas Sci Technol, 2003, 14: R1-R3.

DOI: 10.1088/0957-0233/14/1/201

Google Scholar

[9] Liu S, Fu L, Yang W Q et al. Prior-online iteration for image reconstruction with electrical capacitance tomography [J]. IEE Proc-sci. Meas. Technol., 2004, 151(3): 195-200.

DOI: 10.1049/ip-smt:20040246

Google Scholar

[10] Wang Huaxiang, Zhu Xueming, Zhang Lifeng. Conjugate gradient algorithm for electrical capacitance tomography[J]. Journal of Tianjin University, 2005, 38(1): 1-4.

Google Scholar