Bubble Nucleation of PM Al-9Si Foam

Article Preview

Abstract:

Being the first step of foaming, bubble heterogeneous nucleation of aluminum foam has remarkable effects on the final cell structure of aluminum foam. The bubble heterogeneous nucleation of foaming Al-9Si and TiH2 powder compact has been analyzed. The results obtained are given as follows: (1)The remaining TiH2 particles act as the nuclei during heterogeneous nucleation. (2)The nucleation rate increases with the increasing of TiH2 content, the decrease of TiH2 granularity, the elevation of foaming temperature, and the elongation of foaming time. (3) Only about 5‰ bubble nuclei can survive and develop to the final foam cells. (4)The influence of processing parameters on the nucleation rate descends by the following sequence: foaming temperature elevates 20°C, TiH2 granularity decreases from 150μm to 26μm, TiH2 content increases 0.5%wt., and the time for foaming extends 10s.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 183-185)

Pages:

1682-1686

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Banhar: Prog. Mater Sci. Vol. 46 (2001), No. 6, pp.609-621.

Google Scholar

[2] L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge 1997).

Google Scholar

[3] R. Destefanis, F. Schafer, M. Lambert and M. Faraud: Int. J. Impact Eng. Vol. 33(2006), pp.219-230.

Google Scholar

[4] P. Liu: Introduction to porous materials(Tsinghua University Press, Beijing 2004) (In Chinese).

Google Scholar

[5] H.J. Yu, G.C. Yao, X.L. Wang, Y.H. Liu and H.B. Li: Appl. Acoust. Vol. 68 (2007), pp.1502-1510.

Google Scholar

[6] J. Baumeister, German Patent DE 4018360. (1991).

Google Scholar

[7] M. Haesche, J. Weise, F. Garcia-Moreno and J. Banhart: Mater. Sci. Eng., A Vol. 480 (2008), pp.283-288.

Google Scholar

[8] S. Esmaeelzadeh, A. Simchi, D. Lehmhus: Mater. Sci. Eng., A, Vol. 424 (2006), P. 290-299.

Google Scholar

[9] C.C. Yang and H. Nakae: J. Mater. Process. Technol. Vol. 141 (2003), P. 202-206.

Google Scholar

[10] X.Q. Zuo, J.Y. Zhang and M. Wang: J. Kunming Uni. Sci. Technol. Vol. 28 (2003), No. 5, pp.47-48 (In Chinese).

Google Scholar

[11] H.P. Degischer and B. Kriszt: Handbook of Cellular Metals(WILEY-VCH Gerlag GmbH, Weinhheim 2002).

Google Scholar

[12] F. Garcıamoreno and J. Banhart: Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 309 (2007), pp.264-269.

Google Scholar

[13] M.A. Trunov, M. Schoenitz, X.Y. Zhu and E. L. Dreizin: Combust. Flame Vol. 140 (2005), pp.310-318.

Google Scholar

[14] L.P.H. Jeurgens, W.G. Sloof and F.D. Tichelaar: Thin Solid Films, Vol. 418(2002), No. 2, pp.89-101.

DOI: 10.1016/s0040-6090(02)00787-3

Google Scholar

[15] N.Z. Li, C. Chen and D.P. He: Chin. J. Nonf. Met. Vol. 14 (2004), No. 3, p.379 (In Chinese).

Google Scholar

[16] X.Q. Zuo, J. Mei, H. Xiong, Y. Zhou and J.L. Sun: Chin. J. Nonf. Met. Vol. 18 (2008), No. 1, p.79 (In Chinese).

Google Scholar

[17] X.Q. Zuo, M.S. Liao and X.L. Pan: Heat Treat. Met. (S) Vol. 31 (2006), pp.98-101 (In Chinese).

Google Scholar