An Image-Based Microscale Simulation of Thermal Residual Stresses in DSE Oxide Ceramic Composite

Article Preview

Abstract:

An image-based microscale analysis was conducted by using finite element method (FEM) to simulate the thermal residual stresses in directionally solidified eutectic (DSE) oxide ceramic composites from the thermal expansion and elastic properties and the microstructure features of the constituent phases. This microscale analysis allows a real simulation of morphologies of constituent phases such as size, array and shape. Meanwhile, this model can be applied not only for the calculation of thermal residual stresses, but also for the calculation of mechanical properties. In this work, simulations focus on the distribution of thermal residual stresses in the directionally solidified eutectic (DSE) Al2O3/ Y3Al5O12 (YAG) ceramic composite. A good agreement between simulated and measured thermal residual stresses was observed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

1681-1686

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.V. Bhanu Prasad, B.V.R. Bhat, Y.R. Mahajan, P. Ramakrishnan: Materials Science & Engineering A Vol. 337 (2002), p.179.

Google Scholar

[2] S.F. Corbin, D.S. Wilkinson: Acta Metall Mater. Vol 42 (1994), p.1311.

Google Scholar

[3] R.L. Ashbrook: J. Am. Ceram. Soc. Vol. 60 (1977), p.428.

Google Scholar

[4] C.S. Frazer, E.C. Dicke, A. Sayir: Journal of crystal growth Vol. 233 (2001), p.187.

Google Scholar

[5] J. Llorca, V.M. Orera: Progress in Materials Science Vol. 51 (2006), p.711.

Google Scholar

[6] Y. Waku, H. Otsubo, N. Nakagawa, Y. Kohtoku: J. Mater. Sci. Vol. 31 (1996), p.4663.

Google Scholar

[7] Y. Waku, N. Nakagawa, T. Wakamoto, H. Otsubo, K. Shimizu, Y. Kohtoku: J. Mater Sci. Vol. 33 (1998), p.1217.

Google Scholar

[8] Y. Waku, N. Nakagawa, T. Wakamoto, H. Otsubo, K. Shimizu, Y. Kohtoku: J. Mater. Sci. Vol. 33 (1998), p.4943.

DOI: 10.1023/a:1004486303958

Google Scholar

[9] Hirano K: J. Europ. Ceram. Soc. Vol. 25 (2005), p.1191.

Google Scholar

[10] S. Ochiai, Y. Sakai, K. Kuhara, S. Iwamotoc, J.J. Shaa, H. Okudaa, M. Tanakab, M. Hojob, Y. Wakud, N. Nakagawad, S. Sakatad, A. Mitanid, M. Sato, d T. Ishikawa: Composite Science and Technology Vol. 67 (2007), p.270.

Google Scholar

[11] W.J. Alton, A.J. Barlow: J. Appl. Phys. Vol. 38 (1967), p.3023.

Google Scholar

[12] T. K. Gupta, J. Valentich: J. Amer. Ceram. Soc. Vol. 54 (1971), p.335.

Google Scholar

[13] G.S. Corman: J. Mater. Sci. Lett. Vol. 12 (1993), p.379.

Google Scholar

[14] T.A. Parthasarathy, T. Mah, L.E. Matson: J. Am Ceram. Soc. Vol. 76 (1993), p.29.

Google Scholar

[15] J. J. Sha, S. Ochiai, H. Okuda, Y. Waku, N. Nakagawa, A. Mitani, T. Ishikawa, M. Sato: J. Euro. Ceram. Soc. Vol. 28 (2008), p.2319.

Google Scholar