The Decomposition Mechanism of Titania Film with Nanotube Structure

Article Preview

Abstract:

The ordered nanochannel-array of anodic titanium oxide (ATO) is formed on the electro-polished titanium substrate. This reproducible procedure of long-range ordered nanochannel ATO retains 170 nm films in length. The process is deduced by electrochemically and thermodynamically; from high defect structure of porous ATO and small sizing of decomposing TiO2 cluster on the surfaces. In this study, ATO with 68.2% porosity is discomposed at 581 °C under oxygen partial pressure of 4×10-9 atm. The pore of ATO has wall thickness of 25 nm with density of 8×109 per cm2 under 1.2 vol.% hydrofluoric acid (HF) and 10 vol.% sulfuric acid (H2SO4) electrolyte for 90 seconds of 20 V of applied potential. The pore size is 100 nm in diameter and uniformly distributed with 120 nm pore-to pore distance in between.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

2660-2664

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Masuda, U.S. Patent 6, 139, 713, (2000).

Google Scholar

[2] H. Masuda, K. Yada, A. Osada, Jpn. J. Appl. Phys. Vol. 37 (1998), p. L1340.

Google Scholar

[3] H. Masuda, K. Fukuda, Science Vol. 268 (1995), p.1466.

Google Scholar

[4] Miller, U.S. Patent 5, 747, 180, (1998).

Google Scholar

[5] C. C. Chen, J. H. CHEN, C. G. Chao, Jpn. J. Appl. Phys. Vol. 40 (2005), p.1529.

Google Scholar

[6] Z. Zhang., D. Gekhtman, M. Dresselhaus, Chem. Mater. Vol. 11 (1999), p.1659.

Google Scholar

[7] Z. Zhang , J.Y. Ying, and S. Mildred, J. Mater. Res. Vol. 13 (1998), p.1745.

Google Scholar

[8] D. Gong, C.A. grimes, J. Mater. Res. Vol. 16 (2001) p.3331.

Google Scholar

[9] T. M. Whitney, J. S. Jiang, Science Vol. 261 (1993), p.1316.

Google Scholar

[10] Y. Lei, L. D. Zhang, Applied Physics Letters Vol. 78 (2001), p.1125.

Google Scholar

[11] K. Nielsch, R. B. Wehrspohn, Applied Physics Letters Vol. 79 (2001), p.1360.

Google Scholar

[121] M. Zheng, L. Menon, Physical Review B Vol. 62 (2000), p.12282.

Google Scholar

[13] Y. C. Kong, D. P. Yu, Applied Physics Letters Vol. 78 (2001), p.407.

Google Scholar

[14] H. Yamashita, Y. Ichihashi, Appl. Surf. Sci. Vol. 121 (1997), p.305.

Google Scholar

[15] A. M. Azad, S. A. Akbar, J. Electrochem. Soc. Vol. 139 (1992), p.3690.

Google Scholar

[16] METALAST International, Inc., Metalast, September, 14 (2000) 1.

Google Scholar

[17] C.C. Chen, J.H. Chen, C. G. Chen, W.C. Say, J. Mater. Sci. Vol. 40 (2005), p.4053.

Google Scholar

[18] Marcel Pourbaix, NACE, USA, (1974) 213.

Google Scholar

[19] Ihsan Barin, Thermochemical Data of Pure Substances, Germany, (1989).

Google Scholar

[20] M. W. Chase, Jr., C. A. Davies, J. Phys. Chem. Ref. Data, (1985) 1681.

Google Scholar

[21] R.E. Reed-Hill, Physical Metallurgy Principles 3rd, USA, (1992) 480.

Google Scholar