Acoustic Signal Recognition Based on Time Series Model

Article Preview

Abstract:

Using time series model, isometric transformation time series model and ARTAFIT model, we deal with acoustic signal, obtaining different sets of parameters according to different acoustic signals. We use support vector machine (SVM) to recognize different acoustic signals by analyzing different sets of parameters. When the parameter set is too large, we should first reduce order making use of principal component analysis (PCA), then we can recognize them using support vector machine. In the end, we give a case study, which indicate the results of applying our models are satisfactory.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

3243-3248

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fan, J., Yao,Q. Nonlinear: Time Series[M]. Higher Education Press, 2005. 12.

Google Scholar

[2] Deng, N., Tian,Y.: New Method For Data Mining—Support Vector Machine[M]. Science Press, 2004. 6.

Google Scholar

[3] Bahar Biller, Barry L. Nelson.: Fitting Time-Series Input Processes for Simulation. Operations Research, 2005, 53(3): 549—559.

DOI: 10.1287/opre.1040.0190

Google Scholar

[4] Bahar Biller, Barry L. Nelson.: Evaluation of the ARTAFIT Method for Fitting Time-Series Input Processes for Simulation. Informs Journal on Computing, 2008, 20(3): 485—498.

DOI: 10.1287/ijoc.1070.0261

Google Scholar

[5] Bahar Biller, Barry L. Nelson.: Modeling and Generating Multivariate Time-Series Input Processes Using a Vector Autoregressive Technique. ACM Transactions on Modeling and Computer Simulation, 2003, 13(3): 211—237.

DOI: 10.1145/937332.937333

Google Scholar

[6] Bahar Biller, Barry L. Nelson.: Parameter Estimation for ARTA Processes. Proceedings of the 2002 Winter Simulation Conference: 255—262.

DOI: 10.1109/wsc.2002.1172893

Google Scholar

[7] Bahar Biller, Barry L. Nelson.: Online Companion to Fitting Time-Series Input Processes for Simulation,. (2005).

Google Scholar

[8] Zhang,G., Jin,W., Hu,L. : Based on rough set theory Radar Emitter Signal Recognition[J]. Journal of Xi'an Jiaotong University, 2005, 39(8): 871—875.

Google Scholar

[9] Zhang,Z., Guan,X., Li,Y.: Based on rough set and RBF neural network recognition of radar emitter signal[J]. Aeronautical Computer Technique, 2009, 39(4): 18—21.

Google Scholar

[10] Wang,Y., Zhou,C., Huang,Y., Feng,X.: Based on Minimal Uncertainty Neural Networks Taste Identification of Tea[J]. Journal of Computer Research and Development, 2005, 42(1): 66—71.

DOI: 10.1360/crad20050109

Google Scholar

[11] Chen,J., Kuo,Y., Li,J., Ma,Y.: Based on Wavelet Transform Digital Modulation Recognition Method[J]. Journal of Electronics & Information Technology, 2006, 28(11): 2026—(2029).

Google Scholar

[12] Wang,Y., Wang,J., Len,Y.: The Ratio of Wavelet algorithm and its application [J]. Chinese Journal of Engineering Geophysics, 2004, 1(5): 404—406.

Google Scholar

[13] Tu,Y., Li,J., Wang,G., Li,R.: The Radar Emitter Signal Recognition Based on Welch Power Spectrum[J]. Aerospace Electronic Warfare, 2009, 25(3): 32—34.

Google Scholar

[14] Zou,X., Zhang,G., Li,M., Li, X.: A New Method of radar emitter signal classification[J]。Journal of Data Acquisition & Processing, 2009, 24(4): 487—492.

Google Scholar

[15] C.W.J. Granger, T. Teräsvirta.: Modelling Nonlinear Economic Relationships[M]. Shanghai University of Finance and Economics Press, 2006. 6.

Google Scholar