Experimental Study on the Effects of Rotational Speed and Attack Angle on High Density Polyethylene (HDPE) Friction Stir Welded Butt Joints

Article Preview

Abstract:

Friction stir welding (FSW) is a novel solid-state welding process and has been employed in several industries such as aerospace and automotive. Several parameters such as rotational speed, welding speed, axial force and attack angle play critical roles in FSW process in order to analyze the weld quality. The aim of this study is to investigate the effects of different rotational speeds and attack angles on the weld quality of high density polyethylene (HDPE). In the optimum welding condition, 75% of the base material strength is achieved. SEM micrographs show the changes of the weld microstructure which result in the reduction of the strength and the percent of elongation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

3583-3587

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Assidi, L. Fourment, S. Guerdoux and T. Nelson: Friction model for friction stir welding process simulation: Calibrations from welding experiments. Int J Mach Tool Manu. DOI: 10. 1016/j. ijmachtools. 2009. 11. 008 (2009).

DOI: 10.1016/j.ijmachtools.2009.11.008

Google Scholar

[2] HJ. Liu, H. Fujii, M. Maeda and K. Nogi: Tensile properties and fracture locations of Friction stir welded joints of 2017-T351 aluminum alloy. J Mater Process Technol 142: 692–696(2003).

DOI: 10.1016/s0924-0136(03)00806-9

Google Scholar

[3] W. Gan, K. Okamoto, S. Hirano, K. Chung, C. Kim and RH. Wagoner: Properties of Friction stir welded aluminum alloys 6111 and 5083. J Eng Mater Technol-Trans ASME 130(3): 0310071–03100715(2008).

DOI: 10.1115/1.2931143

Google Scholar

[4] M. Guerra, C. Schmidt, JC. McClure, LE. Murr and AC. Nunes: Flow patterns during friction stir welding. J Mater Charact 49: 95– 101 (2003).

DOI: 10.1016/s1044-5803(02)00362-5

Google Scholar

[5] L. Fratini, G. Buffa and D. Palmeri: Using a neural network for predicting the average grain size in friction stir welding. J Comput Struct 87: 1166–1174(2009).

DOI: 10.1016/j.compstruc.2009.04.008

Google Scholar

[6] G. Buffa, L. Fratini, J. Hua and R. Shivpuri: Friction Stir Welding of Tailored Blanks: Investigation on Process Feasibility. CIRP Ann - Manuf Technol, Vol 55, Issue 1, pp.279-282, DOI: 10. 1016/S0007-8506(07)60416-8 (2006).

DOI: 10.1016/s0007-8506(07)60416-8

Google Scholar

[7] L. Fratini, G. Buffa and R. Shivpuri: Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints. J Acta Mater DOI: 10. 1016/j. actamat. 2009. 11. 048(2010).

DOI: 10.1016/j.actamat.2009.11.048

Google Scholar

[8] P. Bahemmat, MK. Besharati, M. Haghpanahi, A. Rahbari and R. Salekrostam: Mechanical, micro, and macrostructural analysis of AA7075–T6 fabricated by friction stir butt welding with different rotational speeds and tool pin profiles. Proc Inst Mech Eng Part B-J Eng Manuf. DOI: 10. 1243/09544054JEM1554(2009).

DOI: 10.1243/09544054jem1554

Google Scholar

[9] A. Arici and T. Sinmaz: Effects of double passes of the tool on friction stir welding of polyethylene. J Mater Sci 40: 3313 – 3316(2005).

DOI: 10.1007/s10853-005-2709-x

Google Scholar

[10] R. Strand Seth: Effects of Stir Welding on Polymer Microstructure, MSc Dissertation, Department of Mechanical Engineering, Brigham Young University (2004).

Google Scholar

[11] L. Fourment and S. Guerdoux: 3D numerical simulation of the three stages of Friction Stir Welding based on friction parameters calibration. Int J Mater Form 1: 1287 –1290, DOI 10. 1007/s12289-008-0138-5 (2008).

DOI: 10.1007/s12289-008-0138-5

Google Scholar

[12] NJ. Mills Plastics: Microstructure and Engineering Applications. Elsevier Science & Technology Books Inc, p.462 (2005).

Google Scholar