Experimental Evaluation of System Performance for a Machine Tool Cooler Using Inverter Driven Control

Abstract:

Article Preview

Highly accurate manufacture in machining industry cannot be achieved without precise temperature control of the cooling water. However, the machine tool coolers are facing the control hunting of coolant temperature and the dramatic variation of heat load in high-accuracy machining. In this study, experimental investigation on inverter driven compressor for capacity control has been proposed. Effects of using capillary tube and thermostatic expansion valve along with inverter driven control scheme have been investigated comprehensively. Cooling performance and power consumption of the cooler system have been measured at different frequency (hertz) of inverter under specific cooling water temperature. The experimental results reveal that the inverter driven cooler is cost-effective and energy-efficient for high-precision machine tool cooling.

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Edited by:

Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang

Pages:

4073-4076

DOI:

10.4028/www.scientific.net/AMR.189-193.4073

Citation:

F. J. Wang et al., "Experimental Evaluation of System Performance for a Machine Tool Cooler Using Inverter Driven Control", Advanced Materials Research, Vols. 189-193, pp. 4073-4076, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.