Effectiveness of Low Frequency Electromagnetic Shielding of Concrete with the Functionally Primitives Materials of Short Carbon Fibers and Graphite

Article Preview

Abstract:

The electromagnetic shielding properties of short carbon fibers and graphite concrete were investigated, and the influence of the contents of the short carbon fibers and graphite on the electromagnetic shielding effectiveness of the concrete in low frequency was studied. The mechanism causing the influence of the short carbon fibers adulteration on the electromagnetic shielding effectiveness of the graphite concrete at low frequency was investigated. The maximum electromagnetic shielding effectiveness was up to 8.5dB in the low frequency range of 1MHz~1.8GH. The results of the investigation provide the basis for further designing and producing of high-powered electromagnetic shielding concrete at low frequency.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

4297-4303

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shuying Yang, Karen Lozano, Azalia Lomeli, Heinrich D. Foltz, Robert Jones. [J]. Composites, 2005, Part A 36: 691-697.

Google Scholar

[2] Jingyao Cao, D.D.L. Chuang. [J]. Letters to the Editor and carbon, 2003, 41: 2427-2451.

Google Scholar

[3] Dengdao GUAN, Wanxia HUANG, Jiazao HUANG , et al. [J] In Chinese. Electrician technol, 2002(12): 29-30.

Google Scholar

[4] Jingyao Cao, D.D.L. Chuang. [J]. 2003, 33: 1737-1740.

Google Scholar

[5] Haiyan YANG , Jin LI , Qizheng YE, et al. [J] In Chinese. Funct Mater, 2002, 33(3): 341-343.

Google Scholar

[6] Yue ZHANG. [J] In Chinese. Mater Res Transac, 1995, 9(3): 284-288.

Google Scholar

[7] Jingyao Cao, D.D.L. Chung. [J]. Cement and Concrete Research, 2004, 34: 1889-1892.

Google Scholar

[8] Chi-Yuan Huang, Wen-Wei Mo. [J]. Suface and Coating Technology, 2002, 154: 55-62.

Google Scholar

[9] Qing YE , Zenan ZHANG. [J] In Chinese. China Concr and Cem Produ, 1997(5); 12-14.

Google Scholar

[10] D.D.L. Chung. [J]. Carbon , 2001, 39: 279-285.

Google Scholar

[11] Weidong XU , Yi YANG, Baoshan ZHANG, et al. [J] In Chinese. Ordnance Mater Sci Eng, 2003, 26(6): 6-9.

Google Scholar

[12] J. Cao, D.D.L. Chung. [J]. Cement and concrete Research , 2005, 35: 616-617.

Google Scholar

[13] N. Dihovsky, M. Grigorova. [J]. Materials Research Bulletion, 2000, 35: 403-409.

Google Scholar

[14] Junhua Wu, D.D.L. Chung. [J]. Letters to the Editor / Carbon, 2003, 41: 1309-1328.

Google Scholar

[15] Zhiyong JIA. [J] In Chinese. China Arch Mater, 2000, (1): 64-65.

Google Scholar

[16] OTSUKA Hiroshi, HAGA Akira. Magnetic concrete having electromagnetic shielding effect[P]. JP Patent, 2001302318. 2001-10-31.

Google Scholar

[17] BACHE Hans Henrik, ERIKSEN Knud Lund. Magnetic concrete with metal or alloy powder additions for electromagnetic apparaters[P]. DM Patent, 9208678. 1992-5-29.

Google Scholar

[18] A Taflove. Computational Electrodynamics The finite difference time domain method[M]. Boston: ArtechHouse, (2000).

Google Scholar

[19] Huang G Y, Yin C Y. [J] . High Power Laser and Particle Beams, 2006, 18 (1) : 105-109.

Google Scholar

[20] Roger A. Dalke. [J]. IEEE Transactions on Electromagnetic Compatibility, 2000, 42 (2) : 486~496.

Google Scholar

[21] Yong Li, ChangXin Chen, Jiang-Tao Li, Song Zhang, Yu Wei Ni, Seng Cai and Jie Huang. [J]. 2010, 1, 5(7): 1170-1176.

Google Scholar

[22] Qinglei Liu, Di Zhang, Tongxiang Fan, Jiajun Gu, Yoshinari Miyamoto, Zhixin Chen. [J]. Carbon, 2008, 46: 461-465.

Google Scholar

[23] Nadia Abdel, Aal, Farid El-Tantawy, Al-Hajry A, et al. [J] . Polymer Composites, 2008, 29 (2) : 125-132.

Google Scholar

[24] Mahapatra S P, Sridhar V, Tripathy D K. [J] . Polymer Composites, 2008, 29 (5) : 465-472.

Google Scholar

[25] Hongtao Guan, Shunhua Liu, Yuping Duan, Ji Chen. [J]. Cement & Concrete Composites , 2006, 28: 468-474.

Google Scholar

[26] Farid El-Tantawy. [J] . Journal of Applied Polymer Science, 2005, 97 : 1125-1138.

Google Scholar

[27] J. Cao, D.D.L. Chung. [J]. Cement and concrete Research , 2005, 35: 616-617.

Google Scholar

[28] Wen-Hao Lin, Chii-Shyang Hwang. [J]. Journal of Materials Science, 2002, 37(5): 116-119.

Google Scholar

[29] Hongtao Guan, Shunhua Liu, Yuping Duan, Ji Cheng. [J]. Cement & Concrete Composites , 2006, 28: 468-474.

Google Scholar

[30] N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty. [J]. Composites, 2000, Part A: 1069-1081.

Google Scholar

[31] Wern-Shiarng Jou, Huy-Zu Cheng, Chih-Feng Hsu. [J]. Journal of Alloys and Compound, 2007, 434-435: 641-615.

Google Scholar

[32] Li-Li Wang, Beng-Kang Tay, Kye-Yak See, Zhuo Sun, Lin-Kin Tan, Darren Lua. [J]. Carbon, 2009, 47: 1905-(1910).

Google Scholar

[33] Lixin WANG, Deli XI, Tingting HUA, et al. [J]In Chinese. Engineering Chemisty & Metallurgy, 1997, 18(2): 102-107.

Google Scholar

[34] Fukang LIANG. [J] In Chinese. Arch technol, 2001, 32(1): 17.

Google Scholar

[35] Shiguo DU. [J] In Chinese. Arch technol, 2001, 32(1): 17.

Google Scholar

[36] Qinglei Liu, Di Zhang, Tongxiang Fan, Jiajun Gu, Yoshinari Miyamoto, Zhixin Chen. [J]. Carbon, 2008, 46: 461-465.

Google Scholar