Effect of High Magnetic Field on Phase Transformation of 7055 Alloy during Homogenization

Article Preview

Abstract:

The microstructural evolutions of 7055 aluminum alloy after single and two-step homogenization with or without applying 12T high magnetic field were investigated. The as-cast microstructures of 7055 alloy consist of α+AlZnMgCu eutectics, Al7Cu2Fe phase and AlTiCuFe phase. During homogenization, coarse α+AlZnMgCu eutectics located at interdendritic region become smaller, discontinuous and spheroidized, some of them transform into Al2CuMg (S) having a higher melting point. High magnetic field significantly accelerates the dissolution of α+AlZnMgCu eutectics and S phase. The least amount of α+AlZnMgCu eutectics and S phase is obtained when the alloy homogenized at 4650C/10h+4850C/8h under 12T high magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

4472-4476

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.A. Lukasak and R.M. Hart: Aerospace Engineering Vol. 11 (1991), p.21.

Google Scholar

[2] D. Godard, P. Archambault, E. Aeby-Gautier and G. Lapasset: Acta Mater. Vol. 50 (2002), p.2319.

DOI: 10.1016/s1359-6454(02)00063-0

Google Scholar

[3] T.S. Srivatsan, S. Anand, S. Sriram and V.K. Vasudevan: Mater. Sci. Eng. A Vol. 281 (2000), p.292.

Google Scholar

[4] C. Mondal and A.K. Mukhopadhyay: Mater Sci Eng A Vol. 391 (2003), p.367.

Google Scholar

[5] K.H. Chen, H.W. Liu, Z. Zhang, S. Li and R.I. Todd: J. Mater. Process. Technol. Vol. 142 (2003), p.190.

Google Scholar

[6] X.G. Fan, D. Jiang, Q.C. Meng and L. Zhong: Mater. Lett. Vol. 60 (2006), p.1475.

Google Scholar

[7] G.M. Ludtka, R.A. Jaramillo, R.A. Kisner, D.M. Nicholson, J.B. Wilgen, G. Mackiewicz-Ludtka and P.N. Kalu: Scr. Mater. Vol. 51 (2004), p.171.

DOI: 10.1016/j.scriptamat.2004.03.029

Google Scholar

[8] Y.D. Zhang, C. Esling, J.S. Lecomte, C.S. He, X. Zhao and L. Zuo: Acta Mater. Vol. 53 (2005), p.5213.

Google Scholar

[9] M. Qi, Y. Wang, Y.N. Wang and D. Z Yang: Journal of Functional Materials Vol. 36 (2005), p.35.

Google Scholar

[10] X.N. Wang, Z. Chen and B. Liu: Materials Review Vol. 16 (2002), p.25.

Google Scholar

[11] H. Kuwahara, Y, Tomioka and A. Asamitsu: Science Vol. 270 (1995), p.961.

Google Scholar

[12] M. Shimotomai and K. Maruta: Scr. Mater. Vol. 42 (2000), p.499.

Google Scholar

[13] D. A. Molodov and P. J. Konijnenberg: Scr. Mater. Vol. 54 (2006), p.977.

Google Scholar

[14] G.H. Feng, S.X. Zhou, G. Yang and Z.C. Lu: Journal of Iron and Steel Research Vol. 12 (2000), p.27.

Google Scholar

[15] S. Bhaumik, X. Molodova, D. A. Molodov and G. Gottstein: Scr. Mater. Vol. 55 (2006), p.995.

Google Scholar

[16] X.T. Liu, J.Z. Cui, J. Zhang, X. M. Wu and Y. H. Guo: J. Mater. Sci. Vol. 39 (2004), p.4710.

Google Scholar

[17] W. Liu, K. M. Liang, Y. K. Zhong and J.Z. Cui: J. Mater. Sci. Lett. Vol. 15 (1996), p. (1918).

Google Scholar

[18] W. Liu and J. Z. Cui: J. Mater. Sci. Lett. Vol. 16 (1997), p.1410.

Google Scholar

[19] F. Y. Xie, X.Y. Yan, L. Ding, F. Zhang, S.L. Chen, M. Chu and Y.A. Chang: Mater. Sci. Eng. A Vol. 335 (2003), p.144.

Google Scholar

[20] F.H. Gao, N.K. Li, N. Tian and G. Zhao: J. Mater. Metall. Vol. 7 (2008), p.211.

Google Scholar