One-Step Synthesis of ZnS Nanocrystals with Graphite Sheaths from a Single-Source Precursor

Article Preview

Abstract:

Zinc sulfide (ZnS) nanocrystals with graphite sheaths were obtained from pyrolysis of bis(2-mercaptobenzothiazolato)-zinc (II) in nitrogen atmosphere at 400°C for 2 h without any additional sources. X-ray diffraction patterns showed that the ZnS crystals belonged to the hexagonal system. Transmission electron microscope studies revealed that ZnS/C nanocrystals were well-dispersed and had a diameter of 20~30 nm. The possible mechanism for the formation of the interesting well-dispersed microstructures was also proposed.The special structures of ZnS nanocrystals with graphite sheaths may have potential applications in nanoelectronics and photonics. This simple approach may be applied to the synthesis of other semi-conductor nanocrystals.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

1676-1679

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Yu, J. Joo, H.M. Park, S. -I. Baik, Y.W. Kim, S.C. Kim and T. Hyeon, J. Am. Chem. Soc. 127 (2005) 5662-5670.

Google Scholar

[2] J.L. Provis, G.C. Lukey and J.S.J. van Deventer, Chem. Mater. 17 (2005) 3075-3085.

Google Scholar

[3] M.A. Malik, M. Afzaal and P. O'Brien, Chem. Rev. 110 (2010) 4417-4446.

Google Scholar

[4] D. Fan, M. Afzaal, M.A. Mallik, C.Q. Nguyen, P. O'Brien and P.J. Thomas, Coord. Chem. Rev. 251 (2007) 1878-1888.

Google Scholar

[5] J. Joo, H.B. Na, T. Yu, J.H. Yu, Y.W. Kim, F. Wu, J.Z. Zhang and T. Hyeon, J. Am. Chem. Soc. 125 (2003) 11100-11105.

DOI: 10.1021/ja0357902

Google Scholar

[6] T. Kubo, T. Isobe and M. Senna, J. Lumin. 99 (2002) 39-45.

Google Scholar

[7] Y. Yang, O. Chen, A. Angerhofer and Y.C. Cao, J. Am. Chem. Soc. 130 (2008) 15649-15661.

Google Scholar

[8] S. Chen and W. Liu, Mater. Res. Bull. 36 (2001) 137-143.

Google Scholar

[9] Y. Jiang, X.M. Meng, J. Liu, Z.Y. Xie, C.S. Lee and S.T. Lee, Adv. Mater. 15 (2003) 323-327.

Google Scholar

[10] D.C. Harris, Infrared Phys. Techn. 39 (1998) 185-201.

Google Scholar

[11] Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis and J.Q. Xiao, J. Am. Chem. Soc. 126 (2004) 6874-6875.

Google Scholar

[12] G.A. Khitrov and G.F. Strouse, J. Am. Chem. Soc. 125 (2003) 10465-10469.

Google Scholar

[13] Y.C. Zhu, Y. Bando, D.F. Xue and D. Golberg, Adv. Mater. 16 (2004) 831-834.

Google Scholar

[14] P. S. Nair, T. Radhakrishnan, N. Revaprasadu, G. Kolawole and P. O'Brien, J. Mater. Chem. 12 (2002) 2722-2725.

Google Scholar

[15] S. Banerji, R.E. Byrne and S.E. Livingstone, Transition Met. Chem. 7 (1982) 5-10.

Google Scholar

[16] F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53 (1970) 1126-1130.

Google Scholar

[17] R.P. Vidano, D.B. Fischbach, L.J. Willis and T.M. Loehr, Solid State Commun. 39 (1981) 341-344.

DOI: 10.1016/0038-1098(81)90686-4

Google Scholar