Study on the Spread of the Energy Gap in Nanostructure System

Abstract:

Article Preview

We present a discussion of the size-, potential-dependence of the confinement energy in the nanostructure, as well the blue shift due to quantum confinement effect. In this case, we solve the Schrödinger equation by employing two simple models with one-dimensional periodic crystal potential. Results show that the confinement energy increases abruptly as the size of nanostructures decreases. Importantly, the confinement energy no longer strictly follows the size-dependent inverse square formula given by Brus. Furthermore, the band gap and blue shift depend on the crystal potential in the nanostructure, and the confinement energy decreases with the increase of the potential. We also find that the surface bond constriction plays an important role of the confinement energy.

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang

Pages:

436-441

DOI:

10.4028/www.scientific.net/AMR.194-196.436

Citation:

J. Quan et al., "Study on the Spread of the Energy Gap in Nanostructure System", Advanced Materials Research, Vols. 194-196, pp. 436-441, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.