Synthesis, Characterization and Gas Adsorption of Titania Nanotubes

Article Preview

Abstract:

Titania nanotubes (TNTs) have been successfully synthesized by hydrothermal treatment of anatase TiO2 powder in NaOH solution at 110°C for 90 hours and then annealed at the temperature of 400°C. The morphology and crystalline structure of the nanotubes were characterized by using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The average specific surface area of the particle was probed using gas adsorption-desorption measurements, and average particle size was calculated from the specific surface area. Based on the microscopic observations on the transformation process, it indicated that the formation of nanotubular products remained in their shape after the annealing process. While XRD results confirmed the nanotubes were composed of pure anatase TiO2 nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

446-449

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Khan, H.T. Jung and O.B. Yang: Chemical Physics Letters Vol. 458 (1-3) (2008), pp.134-137.

Google Scholar

[2] J.W. Zhang, Y. Wang, Z.S. Jin, Z.S. Wu and Z.J. Zhang: Applied Surface Science Vol. 254 (2008), pp.4462-4466.

Google Scholar

[3] D. Wang, F. Zhou, Y. Liu and W.M. Liu: Materials Letters Vol. 62 (12-13) (2008), pp.1819-1822.

Google Scholar

[4] N. Wang, H. Lin and J.B. Li: Thin solid films Vol. 496 (2) (2005), pp.649-652.

Google Scholar

[5] V.G. Anastasia, A.G. Eugene, E.D. Lyudmila, A.A. Tatyana, B.T. Alexey, A.D. Yuri and D.T. Yuri: Applied Catalysis Vol. 362 (1-2) (2009), pp.20-25.

Google Scholar

[6] Z.Y. Yuan and B.L. Su: Colloids and Surfaces A Vol. 241(1-3) (2004), pp.173-183.

Google Scholar

[7] H.K. Seo, G.S. Kim, G.S. Ansari, Y.S. Kim, H.S. Shin, K.H. Shim and E.K. Suh: Solar energy Materials and Solar Cells Vol. 92 (11) (2008), pp.1533-1539.

DOI: 10.1016/j.solmat.2008.06.019

Google Scholar

[8] K.P. Yu, W.Y. Yu, M.C. Kuo, Y.C. Liou and S.H. Chien : Applied catalysis B: Environmental Vol. 84 (1-2), pp.112-118.

Google Scholar

[9] T. Kasuga, M. Hiramatsu, H. Akihiko, S. Toru and N. Koichi: Langmuir Vol. 14 (1998), pp.3160-3163.

Google Scholar

[10] H.R. Peng, G.C. Li and Z.K. Zhang: Materials Letters Vol. 50 (10) (2005), pp.1142-1145.

Google Scholar

[11] L.Q. Weng, S.H. Song, S. Hodgson, A. Baker and J. Yu: Journal of the European Ceramic Society Vol. 26 (8) (2005), pp.1405-1409.

Google Scholar

[12] T.V. Nguyen and J.C.S. Wu: Applied Catalyst A: General Vol. 335 (1) (2007), pp.112-120.

Google Scholar

[13] S.J. Gregg, K.S.W. Sing: Adsorption, Surface Area and Porosity (Academic Press, London, UK 1982).

Google Scholar

[14] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska: Pure Appl. Chem. (57) (1985), p.603.

DOI: 10.1002/9783527619474.ch11

Google Scholar