Effect of Doping Ions on Electrochemical Properties of LiFePO4 Cathode

Article Preview

Abstract:

Lithium iron phosphate (LiFePO4) cathode materials containing different low concentration ion dopants (Mg2+, Al3+, Zr4+, and Nb5+) were prepared by a solid-state reaction method in an inert atmosphere. The effects of the doping ions on the properties of as-synthesized cathode materials were investigated. XRD results indicate that the ion dopants do not affect the structure of the materials. The galvanostatically charge and discharge tests show that ion dopants can considerably improve the electrochemical performance of the materials, especially large current discharge behaviors. LiFePO4 samples doped with Nb5+ have an initiate capacity of 146.8 mAh•g-1 at 0.1C. Further cycle performance measurements reveal the sample doped with Nb5+ shows the best cycleability. The results also verify that LiFePO4 doped with ions of suited radius and higher valence shows better electrochemical characters.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

1135-1138

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Tarascon and M.D. Guyomard: J. Electrochem. Soc. Vol. 139 (1991), p.2864.

Google Scholar

[2] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi and H. Komori: Electrochim. Acta Vol. 38 (1993), p.1159.

Google Scholar

[3] H. Arai, S. Okada, H. Ohtsuka, M. Ichimura and J. Yamaki: Solid State Ionics Vol. 80 (1995), p.261.

Google Scholar

[4] W.S. Yoon, K.Y. Chung, K.H. Oh and K.B. Kim: J. Power Sources Vol. 119-121 (2003), p.706.

Google Scholar

[5] D.C. Li, T. Muta, L.Q. Zhang, M. Yoshio and H. Noguchi: J. Power Sources Vol. 132 (2004), p.150.

Google Scholar

[6] D. Choi and P.N. Kumta: J. Power Sources Vol. 163 (2007), p.1064.

Google Scholar

[7] G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler and M. Wohlfahrt-Mehrens: J. Power Sources Vol. 119-121 (2003), p.247.

DOI: 10.1016/s0378-7753(03)00241-6

Google Scholar

[8] A. Yamada, H. Koizumi, S.I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi: Nat. Mater. Vol. 5 (2006), p.357.

DOI: 10.1038/nmat1634

Google Scholar

[9] S.I. NIshimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada: Nat. Mater. Vol. 7 (2008), p.707.

Google Scholar

[10] H.C. Shin, W.I. Cho, H. Jang: J. Power Sources Vol. 159 (2006), p.1383.

Google Scholar

[11] Y. Xia, M. Yoshio, H. Noguchi: Electrochim. Acta Vol. 52 (2006), p.240.

Google Scholar

[12] D.H. Kim, J.K. Kim: J. Phys. Chem. Solid Vol. 68 (2007), p.734.

Google Scholar

[13] H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu: Electrochem. Commun. Vol. 8 (2006), p.1553.

Google Scholar

[14] G. Wang, Y. Cheng, M. Yan, Z. Jiang: J. Solid State Electrochem. Vol. 11 (2007), p.457.

Google Scholar

[15] C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li: Powder Technol. Vol. 179 (2007), p.171.

Google Scholar

[16] D.G. Tong, F.L. Luo, W. Chu, Y.L. Li, P. Wu: Mater. Chem. Phy. Vol. 124(2010), p.1.

Google Scholar