Synthesis and Electrochemical Properties of Y-Doped SnO2/C Composite Materials for Lithium-Ion Battery

Abstract:

Article Preview

The layered Y-doped SnO2/C anode materials were prepared by a co-precipitation method. The physical properties of the Y-doped SnO2/C were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements. XRD studies showed that the Y-doped SnO2/C has the same layered structure as the undoped SnO2/C. The SEM images exhibited that the particle size of Y-doped SnO2/C is smaller than that of the undoped SnO2/C and the smallest particle size is only about 1µm. The Y-doped SnO2/C samples were investigated on the Lithium extraction/insertion performances by charge/discharge, cyclic voltammograms (CV), and electrochemical impedance spectra (EIS). The results showed that the optimal doping content of Y was that x=0.07 and 2% content of carbon nanotubes samples to achieve high discharge capacity and good cyclic stability. The electrode reaction reversibility and electronic conductivity were enhanced, and the charge transfer resistance was decreased through Y-doping.

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Edited by:

Huaiying Zhou, Tianlong Gu, Daoguo Yang, Zhengyi Jiang, Jianmin Zeng

Pages:

1157-1162

DOI:

10.4028/www.scientific.net/AMR.197-198.1157

Citation:

S. K. Zhong et al., "Synthesis and Electrochemical Properties of Y-Doped SnO2/C Composite Materials for Lithium-Ion Battery", Advanced Materials Research, Vols. 197-198, pp. 1157-1162, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.