Preparation and Characterization of Surface-Modified β-Tricalcium Phosphate/Ploy(L-Lactide) Biocomposites

Article Preview

Abstract:

A new surface modification method by modifying low molecular weight ploy (L-lactide) (LMW PLLA) onto the β-tricalcium phosphate (β-TCP) superfine particles has been developed. The surface-modified β-TCP is characterized by FT-IR, XRD, digital microscope and contact angle measurement, et al. FT-IR spectra confirmed that LMW PLLA was connected onto the β-TCP surface through ionic interaction. XRD results indicated that the LMW PLLA did not affect the crystalline form of β-TCP, but the XRD patterns of the p-β-TCP showed a little difference with β-TCP. The p-β-TCP particles could be dispersed uniformly in dichloromethane. In contrast, unmodified β-TCP particles are apt to agglomerate after dispersed into dichloromethane. Wet angle measurement showed that hydrolyzed LMW PLLA significantly improves hydrophobicity of modified β-TCP particles. For the preparation of composites, PLLA was mixed with β-TCP and p-β-TCP, respectively, in a ratio of 85/15 (w/w) and moulded into tensile test specimens. Tensile tests showed that mechanical properties were improved, scanning electron microscopy (SEM) exhibited that modified β-TCP is an effective approach to prepare a homogeneous composites, moreover, it indicated a better interfacial phase interaction in the composite with the p-β-TCP. Chemical bonds between filler and PLLA matrix are assumed to be formed by ionic interaction.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

120-126

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. R. Gibson, I. Rehman, S. M. Best and W. Bonfield: J. Mater. Sci. Mater. Med. Vol. 12 (2000), p.799.

Google Scholar

[2] S. Jinawath and P. Sujaridworakun: Mater. Sci. Eng. C. C. Vol. 22 (2002), p.41.

Google Scholar

[3] L. L . Hench and J. Wilson: Science Vol. 226(1984), p.630.

Google Scholar

[4] S. V. Dorozhkin and M. Epple: Angew. Chem. Int. Ed. Engl Vol. 41(2001), p.3130.

Google Scholar

[5] C. L. Li, J. C. Shwu and M. K. Shyh: Polym. Sci. Vol. 108(2008), p.3210.

Google Scholar

[6] V. R. Maria and M. G. Jose: Progress. in Solid. State. Chemistry Vol. 32(2004), p.1.

Google Scholar

[7] S. R. Suprakas, Y. Kazunobu and O. Masami: J. nanoscience. and nanotechnology Vol. 3(2003), p.1.

Google Scholar

[8] R. M. Rasal and D. E. Hirt: J. Biomed. Mater. Res. A. Vol. 88(2008), p.1079.

Google Scholar

[9] S. D. Incardona, L. Fambri and C. Migliaresi: J. Mater. Sci. Mater. Med. Vol. 7(1996), p.387.

Google Scholar

[10] B. D. Ratner: Bioelectron Vol. 10(1995), p.797.

Google Scholar

[11] M. F. Gonzalez, R. A. Ruseckaite and T. R. Cuadrado: J. Appl. Polym. Sci. Vol. 71(1999), p.1223.

Google Scholar

[12] K. Toshihiro, S. Y. Ozaki and H. Tomokatsu: J. mater. sci. lett. Vol. 18(1999), p. (2021).

Google Scholar

[13] K. N. Pham, D. Fullston and C. K. Sagoe: J. Colloid. Interf. Sci. Vol. 315(2007), p.123.

Google Scholar

[14] Y. N. Yang, H. X. Zhang and P. Wang: J. Membr. Sci. Vol. 288(2007), p.231.

Google Scholar

[15] A. Y. Pataquiva Mateus, M. P. Ferraz and F. J. Monteiro: Key Engineering Materials Vol. 330(2007), p.243.

Google Scholar

[16] H. Heide, R. Reiner and K. K. öster, D. E. Patent 2, 620, 907. (1984).

Google Scholar

[17] Y. M. Xiao, D. X. Li, H. S. Fan and X. D. Li: Materials. letters Vol. 61(2007), p.59.

Google Scholar

[18] E. Nejati, V. Firouzdor and M. B. Eslaminejad: Materials. Science. and Engineering. C Vol. 29(2009), p.942.

Google Scholar