Effect of Crystals Size, Surface Area and Pore Size of Hydroxyapatite Microspheres on the Loading Ability of Bovine Serum Albumin

Article Preview

Abstract:

Effect of crystals size, surface area, pore size and porosity of hydroxyapatite microspheres on the loading ability of bovine serum albumin was studied in this paper. The surface morphology, specific surface area and porosity of hydroxyapatite microspheres were characterized by scanning electron microscope, specific surface area and pore size analyzer, respectively. The concentration of BSA in aqueous solutions both before and after adsorption was determined by ultraviolet-visible spectrophotometer. The results indicated that the adsorption behavior of bovine serum albumin appeared to obey the Langmuir-type isotherm model. Fast adsorption appeared at the beginning, and then decreased gradually. Hydroxyapatite microspheres calcined at 600°C had the maximum capacity, and those calcined at 800°C showed lower adsorption ability. The loading ability of hydroxyapatite microspheres depended on its crystal size, specific surface area, pore size and porosity, etc.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

17-20

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.B. Nair, S.S. Babu, H.K. Varma and A. Joh: Acta Biomaterialia Vol. 4 (2008), p.173.

Google Scholar

[2] R.E. Riman, W.L. Suchanek, K. Byrappa, C.W. Chen, P. Shuk and C.S. Oakes: Solid State Ionics Vol. 151 (2002), p.393.

Google Scholar

[3] F. Chen, Z.C. Wang and C.J. Lin: Materials Letters Vol. 57 (2002), p.858.

Google Scholar

[4] Y. Boonsongrit, H. Abe, K. Sato, M. Naito, M. Yoshimura, H. Ichikawa and Y. Fukumori: Materials Science and Engineering B Vol. 148 (2008), p.162.

DOI: 10.1016/j.mseb.2007.09.006

Google Scholar

[5] S. Madhavi, C. Ferraris, T.J. White: J. Solid. State Chem. Vol. 178(2005) , p.2838.

Google Scholar

[6] X. Chen, T. Wu, Q. Wang, J.W. Shen: Biomater Vol. 29(2008), p.2423.

Google Scholar

[7] T.I. Ivanova, O.V. Frank-Kamenetskaya, A.B. Koltsov, V.L. Ugolkov: J. Solid. State Chem. Vol. 160(2001), p.340.

Google Scholar

[8] H. Zhou, T. Wu, X. Dong, Q. Wang and J. Shen: Biochemical and Biophysical Research Communications Vol. 361 (2007), p.91.

Google Scholar

[9] J.W. Shen, T. Wu, Q. Wang, H.H. Pan: Biomaterials Vol. 29 (2008) , p.513.

Google Scholar

[10] H. Modarress, M. Mohsen-Nia: Journal of Biotechnology Vol. 131S (2007) , p. S254.

Google Scholar

[11] M.T. Bernards, C. Qin and S. Jiang: Colloids and Surfaces B: Biointerfaces Vol. 64(2) (2008), p.236.

Google Scholar

[12] S. Ouizat, A. Barroug1, A. Legrouri and C. Rey: Materials Research Bulletin, Vol. 34(1999), p.2279.

Google Scholar

[13] K. Kandori, A. Fudo and T. Ishikawa: Colloids and Surfaces B: Biointerfaces Vol. 24 (2002), p.145.

Google Scholar

[14] E.G. Ferrer, A. Bosch, O. Yantorno and E.J. Baran: Bioorganic & Medicinal Chemistry 16 (2008) 3878.

Google Scholar

[15] L.Z. Wu, B.L. Ma, D.W. Zou, Z.X. Tie, J. Wang and W. Wang: Journal of Molecular Structure Vol. 877 (2008), p.44.

Google Scholar

[16] R.E. Riman, W.L. Suchanek, K. Byrappa, C.W. Chen, P. Shuk and C.S. Oakes: Solid State Ionics Vol. 151 (2002), p.393.

Google Scholar

[17] T. Kopac, K. Bozgeyik and J. Yener: Colloids and Surfaces. A Physicochemical and Engineering Aspects Vol. 322 (1-3) (2008), p.19.

DOI: 10.1016/j.colsurfa.2008.02.010

Google Scholar

[18] H. Krzysztof, M.B. Mirosław, B.M. Jadwiga, H. Maria, M. Włodzimierz, P. Tomasz, P. Anna and Z. Jerzy: J Eur Ceram Soc Vol. 26 (2006) , p.537.

Google Scholar

[19] N. Patel, I.R. Glbson, S. Ke, S.M. Best and W. Bonfield: J Mater Sci: Mater Med Vol. 12(2001), pp.181-188.

Google Scholar

[20] A.J. Wang, Y.P. Lu, R.F. Zhu, S.T. Li, G.Y. Xiao, G.F. Zhao and W.H. Xu: J Biomed Mater A Vol. 87 (2008), p.557.

Google Scholar

[21] B. Wang, L.R. Teng, C.Y. Wang, Q.F. Meng, L.Z. Zhao and B. Gao: Chem Res Chin Vol. 23 (2007), p.254.

Google Scholar

[22] K. Kawasaki, M. Kambara, H. Matsumura and W. Norde: Colloid Surf B Vol. 32(2003), p.321.

Google Scholar

[23] W.K. Li and S.J. Li: Colloid Surf A Vol. 295(2007), p.159.

Google Scholar

[24] K. Kontturi and M. Vuoristo: Desalination Vol. 104 (1996), p.99.

Google Scholar

[25] T. Kopac, K. Bozgeyik and J. Yener: Colloid Surf A Vol. 322(2008), p.19.

Google Scholar

[26] T. Matsumoto, M. Okazaki, M. Inoue, S. Yamaguchi, T. Kusunose, T. Toyonaga, Y. Hamada and J. Takahashi: Biomaterials Vol. 25(2004), p.3807.

DOI: 10.1016/j.biomaterials.2003.10.081

Google Scholar

[27] O. Takagi, N. Kuramoto, M. Ozawa and S. Suzuki: Ceramics International Vol. 30 (2004), p.139.

Google Scholar

[28] K. Kandori, A. Fudo and T. Ishikawa: Colloid Surf B Vol. 24(2002), p.145.

Google Scholar

[29] T. Matsumoto, M. Okazaki, M. Inoue, S. Yamaguchi, T. Kusunose, T. Toyonaga, Y. Hamada and J. Takahashi: Biomaterials Vol. 25(2004), p.3807.

DOI: 10.1016/j.biomaterials.2003.10.081

Google Scholar

[30] S. Ouizat, A. Barroug, A. Legrouri and C. Rey: Mater Res Bull Vol. 34(1999), p.2279.

Google Scholar

[31] Information on http: /www. gsc. dicp. ac. cn/jxgl/fxzyk/6. ppt.

Google Scholar