Effects of Nb Content on Young’s Modulus and Tensile Property of Ti-30Ta Alloy for Biomedical Applications

Article Preview

Abstract:

The effects of Nb addition on microstructures, Young’s moduli, tensile properties of Ti-30Ta-xNb (x = 21, 24, 27, 30, wt. %) alloys were investigated in this study. The results show that dual phases containing β phase and a little α" martensite were observed when x = 21 and 24, whereas single β phase is present when x = 27 and 30. A minimum Young’s modulus of 52.13 GPa was obtained in Ti-30Ta-21Nb alloy. Ti-30Ta-xNb alloys exhibit high strength-to-modulus ratios, showing their great potentials to develop as new candidates for biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

32-35

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Niinomi: Metall. Mater. Trans. A Vol. 33A (2002), p.477.

Google Scholar

[2] M.J. Long and H.J. Rack: Biomaterials Vol. 19 (1998), p.1621.

Google Scholar

[3] Z.T. Yu and L. Zhou: Mater. Sci. Eng. A Vol. 438-440 (2006), p.391.

Google Scholar

[4] D.R. Sumner and J.O. Galantle: Clin. Orthop. Relat. Res. Vol. 274 (1992), p.202.

Google Scholar

[5] M. Niinomi: Mater. Sci. Eng. A Vol. 243 (1998), p.231.

Google Scholar

[6] Y.L. Zhou, M. Niinomi and T. Akahori: Mater. Sci. Eng. A Vol. 371 (2004), p.283.

Google Scholar

[7] Y. Song, D.S. Xu, R. Yang, D. Li, W.T. Wu and Z.X. Guo: Mater. Sci. Eng. A Vol. 260 (1999), p.269.

Google Scholar

[8] E.W. Robare, C.M. Bugle, J.A. Davidson and K.P. Daigle, in: Advances in the Science and Technology of Titanium Alloy Processing, edited by I. Weiss/R. Srinivasan P.J. Bania/D. Eylon /S.L. Semiatin, TMS, Warrendale (1997).

Google Scholar

[9] K.M. Entwistle, in: Physical examination of metals, edited by B. Chalmmers A.G. Quareel. Edward Arnold, London (1960).

Google Scholar

[10] J.D.H. Paul, F. Appel and R. Wagner: Acta Metall. Mater. Vol. 46 (4) (1998), p.1075.

Google Scholar

[11] H.Y. Kim, H. Satoru, J.I. Kim, H. Hosoda and S. Miyazaki: Mater. Trans. Vol. 45 (2004), p.2443.

Google Scholar

[12] J.I. Kim, H.Y. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Mater. Sci. Eng. A Vol 403 (2005), p.334.

Google Scholar

[13] M. Hunt: Mater. Eng. Vol. 108 (6) (1991), p.27.

Google Scholar

[14] Y. Zhou, Y.X. Li, X.J. Yang, Z.D. Cui and S.L. Zhu: J. Alloy Compd. Vol. 486 (2009), p.628.

Google Scholar

[15] Y.L. Hao, M. Ninomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang and A. Suzuki: Metall. Mater. Trans. A Vol. 33A (2002), p.3137.

Google Scholar