Effects of Gamma Irradiation on the Structure and Mechanical Properties of Wild Silkworms and Bombyx Mori Silk Fibroin Films

Article Preview

Abstract:

The structure and mechanical properties of A. yamamai, A. perny and B. mori silk fibroin films irradiated by gamma ray with various doses of 0, 25, 50, 100 and 200 kGy, respectively were determined by XRD, FT-IR, DSC and Instron 3365 equipment. Results showed that the aggregation structure and molecular conformation of A. yamamai, A. perny and B. mori silk fibroin films irradiated by gamma ray with those doses mentioned above were not significantly changed. However, with the increase of radiation intensity, the thermal stability of silk fibroin films declined slightly, and the breaking strength and extensibility reduced significantly, due to the breakdown of parts of secondary bonds and covalent bonds. These results suggested that, when these silk fibroin materials were sterilized by gamma irradiation, smaller radiation doses should be used, otherwise irreversible damages on these materials would be caused.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

27-31

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wang, H.J. Kim, G. Vunjak-Novakovic, D.L. Kaplan. Biomaterials, 2006, 27(36): 6064-6082.

DOI: 10.1016/j.biomaterials.2006.07.008

Google Scholar

[2] U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan. Biomaterials, 2005, 26(15): 2275-2285.

Google Scholar

[3] D.W. Hutmacher. Biomaterials, 2000, 21: 2529-2543.

Google Scholar

[4] B.D. Lawrence, J.K. Marchant, M.A. Pindrus, et al. Biomaterials, 2009, 30: 1299-1308.

Google Scholar

[5] Y. Shamis, S. Patel, A. Taube, et al. Tissue Engineering Part C: Methods, 2009, 15(3): 445-454.

Google Scholar

[6] L. Morejon-Alonso, R.G. Carrodeguas, et al. Materials Research, 2007, 10(1): 15-20.

Google Scholar

[7] M.S. Jahan, D.E. Thomas, M.D. Ridley. Materials Science Forum, 2003, 426-432(4): 3139-3144.

DOI: 10.4028/www.scientific.net/msf.426-432.3139

Google Scholar

[8] K. Filipczak, M. Wozniak, P. Ulanski, et al. Macromolecular Bioscience, 2006, 6(4): 261-273.

Google Scholar

[9] T. Masuhiro, et al. Journal of Applied Polymer Science, 1994, 51(5): 823-829.

Google Scholar

[10] M.Z. Li, S.Z. Lu, Z.Y. Wu, et al. Journal of Applied Polymer Science, 2001, 79: 2185-2191.

Google Scholar

[11] K. Hirabayashi, Y. Kondo, Y. Go. Sen-i Gakkaishi, 1967, 23(5): 199-207.

Google Scholar

[12] M.Z. Li, W. Tao, et al. Polymers for advanced technologies, 2003, 14: 694-698.

Google Scholar

[13] Y. Kondo, K. Hirabayashi, E. Iizuka, Y. Go. Sen-i Gakkaishi1, 1967, 23(7): 311-315.

Google Scholar

[14] K. Hirabayashi, M. Tsukada. Journal of Sericulture Science, Japan, 1976, 45(6): 473-478.

Google Scholar

[15] M. Tsukada. Journal of Polymer Science Part B: Polymer Physics, 1986, 24: 457-460.

Google Scholar

[16] H.Y. Kweon, Y. H. Park. Journal of Applied Polymer Science, 2001, 82: 750-758.

Google Scholar

[17] H.Y. Kweon, I.C. Um, Y.H. Park. Polymer, 2000, 41: 7361-7367.

Google Scholar

[18] M. Tsukada, et al. Journal of Polymer Science Part B: Polymer Physics, 1994, 32: 1407-1412.

Google Scholar

[19] M.Z. Li, et al. Journal of Dong Hua University (Nature Science Edition), 2001, 27: 12-19.

Google Scholar

[20] H. Kweon, S.O. Woo, Y.H. Park. Journal of Applied Polymer Science, 2001, 81(9): 2271-2276.

Google Scholar