Blood Compatibility of TiO2-xNx Thin Films Prepared by Improved Ultrasonic Spray Pyrolysis

Article Preview

Abstract:

Nitrogen-doped titanium oxide (TiO2-xNx) films were prepared by an improved ultrasonic spray pyrolysis device with buty1 titanate as the titanium source and ammonia as the nitrogen source. X-ray diffraction technique, scanning electronic microscope and UV-VIS spectroscopy were applied to study the microstructure, surface morphology and optical properties of the resulting films. The XRD peak intensity of the as-prepared films decreased with the increasing of nitrogen content and increased with the increasing of temperature, which indicates that the N doping introduced defects or strain in the TiO2 film. The SEM results indicate that all the samples have a nano-sized uniform surface. The smallest band gap and best hydrophobicity are obtained at the nitrogen concentration of 4 at. % and deposited at 400°C. The blood compatibility of TiO2-xNx thin films was observed through platelet adhesion. The experiments results show that the amount of thrombus on the TiO2-xNx thin films is much less than that of pyrolytic carbon. The experimental results show that the nano-sized TiO2-xNx thin films will be a new kind of promising materials applied to artificial heart valve and endovascula stent.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

208-214

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Kishore, S. N. Singh, B.K. Das, Renew. Energy 12 (1997) 131.

Google Scholar

[2] Y. Abe, T. Fukuda, J. Appl. Phys. 33 (1994) L1248.

Google Scholar

[3] A. Hagfeldt, M. Grätzel, Chem. Rev. 95 (1995) 49.

Google Scholar

[4] Y.C. Yeh, T. T. Tseng, D. A. Chang, J. Am. Ceram. Soc. 73 (1990) (1992).

Google Scholar

[5] M. C. Sunny, S. C. P. harma. J. Biomater Appl. 6 (1991) 89-98.

Google Scholar

[6] B. Walivaara, I. Lunstrom. Clin Mater. 12 (1993) 141-148.

Google Scholar

[7] R. Asahi, T. Morikawa and T. Ohwaki, Science 293 (2001) 269.

Google Scholar

[8] S. H. Lee, E. Yamasue and H. Okumura: Appl. Catal. A: Gen. 371 (2009) 179–190.

Google Scholar

[9] T. Giannakopoulou, N. Todorova and P. Osiceanu: Thin Solid Films 517 (2009) 6694–6699.

DOI: 10.1016/j.tsf.2009.05.015

Google Scholar

[10] F. Peng, L. F. Cai and L. Huang: J. Phys. Chem. Solids 69 (2008) 1657–1664.

Google Scholar

[11] H. Zhoua, T. Tesfamichael and J.M. Bell: Mater. Sci. Eng. B 126 (2006) 44–48.

Google Scholar

[12] M. Okuyaa, K. Shiozakia and N. Horikawaa: Solid State Ionics 172 (2004) 527–531.

Google Scholar

[13] A. Nakaruk, D. Ragazzon and C. C. Sorrell: Thin Solid Films doi: 10. 1016/j. tsf. 2009. 10. 109.

Google Scholar

[14] W. J. Weng, M. Ma and P. Y. Du: Surf. Coat. Techno. 198 (2005) 340– 344.

Google Scholar

[15] V. Jokanović, A. M. Spasić and D. Uskoković: J. Colloid. Interf. Sci. 278 (2004) 342–352.

Google Scholar

[16] F. M. Meng, Z.Q. Sun: Appl. Surf. Sci. 255 (2009) 6715–6720.

Google Scholar

[17] M.C. Yang, T. S. Yang and M. S. Wong, Thin Solid Films, 469–470 (2004) 1–5.

Google Scholar

[18] J. L. Gole, J. D. Stout and C. Burda: J. Phys. Chem. B 108 (2004) 1230.

Google Scholar

[19] J. H. Sun, L. P. Qiao and S. P. Sun: J. Hazard. Mater. 155 (2008) 312–319.

Google Scholar

[20] H. B. Jiang, L. Gao: Mater. Chem. Phys. 77 (2002) 878–881.

Google Scholar

[21] H.Y. Chou, E. K. Lee and J. W. You: Thin Solid Films 516 (2007) 189–192.

Google Scholar