Influence of Ag Doping on the Crystal Structure and Photocatalytic Activity of FeVO4

Article Preview

Abstract:

Silver (Ag+) doped iron (III) vanadate (FeVO4) samples are prepared by the precipitation method and then characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy(XPS). The photocatalytic activity under visible light is evaluated by photocatalytic degradation of methyl orange (MO) in the solution. The results show that both FeVO4 and Ag+ doped FeVO4 samples are triclinic, the later have different surface morphology, and some needle-shaped materials appear in the later. From XPS, there are more Fe2+ ions in Ag+ doped FeVO4 sample than that in FeVO4 one without Ag+. It indicates that Ag+ doping can increase the density of the surface oxygen vacancies of catalysts, which can act as electron traps promoting the electron-hole separation and then increase the photo-activity. The decoloration rate after Ag+ doping against methyl orange solution can reach about 81%, and be more about 20% than that of pure FeVO4.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

919-925

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. I. Crepaldi, G.J.A.A. Soler-Illia, D. Crosso. J. Am. Chem. Soc. 125(2003) 9770.

Google Scholar

[2] G. Subramania, K. Constant, R. Biswas. J. Am. Ceram. Soc. 85(2002) 1383.

Google Scholar

[3] T. Chen, G. P. Wu, Z. C. Feng. Chin J Catal. 29(2008) 105.

Google Scholar

[4] F Dong, D M Yang, M Zhangl. Chin J Catal. 28(2007)958.

Google Scholar

[5] Y. Hu, C.W. Yuan, J. Zhao, Langmuir 17(2001)4118.

Google Scholar

[6] U Siemon, D Bahnemann, J Juan. Photochem Photobiol A, 148(2002) 247.

Google Scholar

[7] V Alexander, N Evgueni. Savinov, Z S Jin. Photochem Photobiol A, 125( 1999)113.

Google Scholar

[8] Y Wu, S C Zhang, L W Zhang, et al. Chem. Res. Chinese U. 23(2007)465.

Google Scholar

[9] J H Kou, H T Zhang, Z H Li, et al. J. Catal Lett. 2007, 10562-007-9358-4.

Google Scholar

[10] Z. G Zou, J. H Ye, K Sayama, H Arakawa., Nature. 414(2001)625.

Google Scholar

[11] M. Wang, L.A. Wang, W. J. Zhang. J Func Materia( in Chinese). 40(2009)201.

Google Scholar

[12] L Ge, L S Cui. J. Chen, Ceram Soc in Chinese . 36(2008)320.

Google Scholar

[13] L Ge. J. Inorganic Material in Chinese. 23(2008)449.

Google Scholar

[14] M. Wang, L.A. Wang, G Chu J Func Materia( in Chinese), 41(2010) 228.

Google Scholar

[15] E. Baba Ali, J.C. Bernede, A. Barreau. Mater. Chemi. & Phys. 63 (2000)208.

Google Scholar

[16] D. Costa, P. Arcus, W.P. Yang. Electrochem. Soc., 141(1994) 2669.

Google Scholar

[17] N S Rao, O G Palanna. Bull. Mater. Sci., 18(1995) 229.

Google Scholar

[18] L X Sang, S H Zhong, X X Fu. Chemical J of Chinese University. 24(2003)320.

Google Scholar

[19] R Nsuresh, O G Palanna. Bull. Mater Sci, 18(1995)229.

Google Scholar

[20] A W Xu , Y Gao, H Q Liu. J Catal, 207(2002)151.

Google Scholar