[1]
Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238: 37-38.
DOI: 10.1038/238037a0
Google Scholar
[2]
S. Kohtani, M. Tomohiro, K. Tokumura, R. Nakagaki, Appl. Catal. B: Environ, 2005, 58: 265–272.
Google Scholar
[3]
Fretwell, R. and Douglas, P., An active, robust and transparent nanocrystalline anatase TiO2 thin film-preparation, characterization and the kinetics of photodegradation of model pollutants. J. Photochemical. Photobiol. A: Chem, 2001, 143, 229–240.
DOI: 10.1016/s1010-6030(01)00526-3
Google Scholar
[4]
Pena, M.A. and J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101: 1981-(2017).
Google Scholar
[5]
Tejuca, L.G., J.L.G. Fierro, and J.M.D. Tascon, Structure and reactivity of perovskite-type oxides. Advances in Catalysis, 1989, 36: 237-328.
DOI: 10.1016/s0360-0564(08)60019-x
Google Scholar
[6]
Susumu Nakayama, Masahiro Okazaki, Yan Lin Aung, et al. Preparations of perovskite-type oxides LaCoO3 from three different methods and their evaluation by homogeneity, sinterability and conductivity[J]. Solid State Ionics, 2002, 158: 133-139.
DOI: 10.1016/s0167-2738(02)00767-1
Google Scholar
[7]
Cui Xiulan, Liu Yuan. New methods to prepare ultrafine particles of some perovskite-type oxides[J]. Chemical Engineering Journal, 2000, 78 (8): 205-209.
DOI: 10.1016/s1385-8947(00)00132-7
Google Scholar
[8]
Susumu Nakayama, Masahiro Okazaki, Yan Lin Aung, Masatomi Sakamoto. Preparations of perovskite-type oxides LaCoO3 from three different methods and their evaluation by homogeneity, sinter ability and conductivity[J]. Solid State Ionics, 2003: 133-139.
DOI: 10.1016/s0167-2738(02)00767-1
Google Scholar
[9]
Larry L. Hench, Jon K. West. The sol-gel process[J]. Chem. Rev, 1990, 90: 33-72.
Google Scholar
[10]
Yu Gaoqi, Zhao Huizhong, Zhang Guangde, et al. Preparation of ultrafine perovskite oxide LaMnO3+λ by Supercritical Fluid Drying[J]. Journal of Rare Earths, 2005, 23(2): 33-36.
Google Scholar
[11]
LaMnO3+λ,2010, 28(2): 171-176(Zhang Kan, Sun Shaoxue, Yu Gaoqi. The influence of catalysis activity LaMnO3+λ Ce-doped [J]. Journal of the Chinese Rare Earth Society, 2010, 28(2): 171-176).
Google Scholar
[12]
Chih-Wei Tang, Chen-Bin Wang, Shu-Hua Chien. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS[J]. Thermochimica Acta, 2008, 473: 68-73.
DOI: 10.1016/j.tca.2008.04.015
Google Scholar
[13]
Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds [J]. Journal of Organometallic Chemistry, 1986, 326(2): C92-C93.
DOI: 10.1016/0022-328x(87)80177-8
Google Scholar
[14]
Masoud Salavati-Niasari, Zeinab Fereshteh, Fatemeh Davar. Synthesis of cobalt nanoparticles from [bis(2-hydroxyacetophenato)cobalt(Ⅱ)] by thermal decomposition[J]. Polyhedron, 2009, 28: 1065-1068.
DOI: 10.1016/j.poly.2009.01.012
Google Scholar
[15]
VıctorA. de la Pena O'Shea, Narcıs Homs. X-ray diffraction study of Co3O4 activation under ethanol steam-reforming[J]. Catalysis Today, 2007, 126: 148-152.
DOI: 10.1016/j.cattod.2006.10.002
Google Scholar
[16]
Laure Simonot,Francois Garin,Gilbert Maire. A comparative study of LaCoO3,Co3O4 and LaCoO3-Co3O4. Preparation,characterisation and catalytic properties for the oxidation of CO[J]. Applied Catalysis B:Environmental, 1997, 11: 167-179.
DOI: 10.1016/s0926-3373(96)00046-x
Google Scholar
[17]
Jing-Shan Do, Chien-Hsiang Weng. Preparation and characterization of CoO used as anodic material of lithium battery[J]. Journal of Power Sources, 2005, 146: 482-486.
DOI: 10.1016/j.jpowsour.2005.03.095
Google Scholar
[18]
Fu Xixian, Yang Qiuhua, Wang Junzhen, et al. Photocatalytic degradation of water-soluble dyes by LaCoO3[J]. Journal of Rare Earths, 2003, 21(4): 424-426.
Google Scholar