Biohydrometallurgy: From the Single Cell to the Environment

Paper Title Page

Authors: Mariekie Gericke, Byron Benvie, Leon Krüger
Abstract: The weathering of kimberlite ores leads to the weakening of the kimberlite structure, which allows the use of less intensive comminution procedures during the liberation of diamonds from the ore, resulting in a decrease in potential damage to the diamonds. The possibility to use iron- and sulphur-oxidising chemolithotrophic microorganisms as a way to accelerate the weathering of kimberlite ores was evaluated. It was demonstrated that the presence of sulphuric acid as well as ferric iron could result in changes in the clay component of these ores. The results provided promising evidence that weathering can be successfully accelerated, but showed that the degree of transformation varies between different kimberlite types with different mineralogical characteristics.
75
Authors: Alejandra Giaveno, Edgardo R. Donati
Abstract: Bioleaching of a sulfide ore was investigated using a consortium of thermophilic bacteria and archaea. The consortium was obtained through successive enrichment procedures (using M88 with tetrathionate) after isolating from two different places into the geothermal area (Baño 9 and Las Maquinitas) of the Copahue volcano (in the north of Neuquén province in Argentina). Bioleaching experiments were carried out in 250-ml shake flasks with 100 ml of media and 1 g of the sulfide ore. Flasks were incubated at 150 rpm and 70 oC. The major constituents of the ore (La Resbalosa, Argentina) were sphalerite, pyrite, chalcopyrite and galena. The sample used throughout bioleaching experiments contained 22.5 % Zn. Two different media (0K and M88) were evaluated with and without the addition of elemental sulfur. Genetic diversity analysis of the microbial community was performed by PCR amplification of bacterial 16S rDNA fragments and analyzed by DGGE (denaturing gradient gel electrophoresis). The 16S rDNA was amplified by using eubacteria and archaea primers. Metal concentration, Eh and pH were periodically analyzed. Solid residues were filtered, washed, dried and finally analyzed by XRD and XRF. After 45 days, more than 50 % of zinc and about 100 % of the copper were solubilized. Galena and jarosite were detected in the solid residues. The data indicated that the dominant acidophiles were bacteria or archaea according to the media. M88 media allowed an important decrease of pH and higher zinc extractions while the presence of sulfur did not show significant influence on the zinc recovery.
79
Authors: Daniela G. Horta, Denise Bevilaqua, Heloísa A. Acciari, Oswaldo Garcia Jr., Assis Vicente Benedetti
Abstract: The electrochemical response of chalcopyrite was studied using electrochemical noise analysis (ENA). The assay was carried out under constant aeration using 30 mL in two electrochemical cells containing iron-free mineral salts solution. These cells were initially monitored for 56 hours. After 72 hours, 7.25×1010 cells mL-1 of A. ferrooxidans strain LR were added in both cells and monitored until 128 h. Subsequent to this period, 0.927 mmol L-1 of silver ions and 400 mmol L-1 of chloride ions were added each one separately. Both conditions were monitored until 168 hours. According to results obtained, it was observed that Cl- ions addition induced an accelerated corrosion process. However, there is a tendency of the system to reach the stationary state due to repassivation of the electrodic surface. In the other side, the Ag+ addition contributed for the maintenance of the oxidant atmosphere, in spite of controversial effect caused by considerable variations in the Rn values, resulting in a instability in the chalcopyrite reactivity.
83
Authors: Iveta Štyriaková
Abstract: Ultra-fine iron particles are difficult to treat by conventional mineral processing methods. Thus bioleaching is an attractive alternative for effective removal of iron minerals. The removal of oxidic Fe-phases from industrial silicates via bioleaching needs to be optimized with regard to the rate of iron reduction and dissolution. A new role for chelators as the low addition of AQDS or NTA during bacterial quality improvement of non-metallics, resulted in stimulating of Fe dissolution under non-controlled anaerobic conditions. AQDS stimulated bacterial iron reduction and Fe2+ concentration in solution was higher than Fe3+. However, NTA non-stimulated iron reduction, but increased bacterial iron dissolution in form of Fe3+. Changes in iron removal from samples were used to assess the chelator effectiveness of the heterotrophic bioleaching process. Chelators might be added to iron-contaminated non-metallics during bioleaching processes for stimulation of rate of iron removal.
87
Authors: Adrian A. Nagy, Eberhard D. Gock, Frank Melcher, Terzan Atmaca, Lothar Hahn, Axel Schippers
Abstract: The acid mine drainage (AMD) generating sulfidic tailings have a total mass of 1,639,130 t containing 1.65 g/t Au, 34.5 g/t Ag, 7.74 % Fe, 5.91 % S, 3.2 % As, 0.75 % Zn and 0.05 % Cu. The precious metals Au and Ag are enriched in the fine fractions. Approximately 35 % of the material is below 25 /m in size and 53 % below 63 /m. Electron microprobe analysis of a sulfide concentrate of the tailings, produced by gravity separation, proved the occurrence of pyrite and arsenopyrite with appreciable sphalerite and galena. Refractory gold (up to 316 g/t) is hosted in Asrich zones of some arsenopyrites. Approximately 200 g of the sulfide concentrate of the tailings was biooxidized in laboratory shake flasks using an adapted mixed culture of Acidithiobacillus ferrooxidans (Ram 6F), Acidithiobacillus thiooxidans (Ram 8T) and Leptospirillum ferrooxidans (R3). During biooxidation, arsenopyrite was preferentially dissolved and the secondary mineral tooeleite (Fe8(AsO4)6(OH)5·H2O) precipitated. The following cyanidation of the biooxidized sulfide concentrate showed a recovery of 97 % and 50 % for Au and Ag, respectively. The values were 56 % and 18 % for the untreated concentrate. The recovery of Au and Ag from the tailings significantly reduces the costs for the tailings remediation to mitigate AMD release.
91
Authors: Zygmunt Sadowski, A. Szubert, Irena Helena Maliszewska, Ewa Jazdzyk
Abstract: High content of organic compounds is characteristic for black shale-type ores. Metalloporphyrins are known as the most stable and resistant for biodestruction compounds of organic matter. Based on results obtained in previous studies, four metalloporphyrins were synthesised [1]. The experiments of biodestruction of organic matter extracted from polish black shale ore samples and of the synthetic metalloporphyrins were provided using autochthonous, heterotrophic bacteria mixtures isolated form polish black shale samples, and two Streptomyces species. It was found that biodestruction of black shale organic matter and copper- and vanadylporphyrins is possible, but it is a long term process. Porphyrins of Ni and Fe were resistant to biodegradation.
95
Authors: Sabine Willscher, M. Katzschner, K. Jentzsch, S. Matys, Herbert Pöllmann
Abstract: Electrical and electronic equipment (EEE), e.g. printed circuit boards, contain substantial amounts of metals, e.g. Cu, Pb and Sn. The objective of this work was to investigate the bioleaching of a material, originating from a technical waste processing facility, as one possible way of a complete separation of the metals from the polymer carrier. During the leaching experiments the mechanism of the leaching process was investigated, and biofilms and precipitates were analyzed by microscopical (SEM) and spectroscopical methods (EDX, XRF, XRD). The enhanced formation of exopolymer layers seems to promote the precipitation of secondary mineral particles beneath and the sorption of particles from the suspension on the layer surface.
99
Authors: V.I. Groudeva, K. Krumova, Stoyan N. Groudev
Abstract: A rich-in- carbonates copper ore was subjected to bioleaching under alkaline pH conditions by means of different microorganisms or their metabolites. The ore contained 1.40% copper, 1.94% sulphur, 3.25% iron and 20.3% carbonates, and had a pH of 8.6 and a highly positive net neutralization potential (325 kg CaCO3/t). Copper was present mainly as different sulphide minerals (bornite, covellite, chalcopyrite). The leaching was carried out by means of the shake-flask technique at 32 oC using finely ground (minus 100 μm) ore. The following microorganisms were used to leach the sample: ammonifying bacteria (related to the genera Bacillus, Acinetocater and Vibrio); heterotrophic bacteria (Acetobacter and Pseudomonas) and fungi (Asperillus niger and Penicillium chrysogenum) producing citric acid; heterotrophic bacteria (Micrococcus, Alcaligenes and Bacillus) producing amino acids (mainly alanine); basophilic chemolithotrophic bacteria (Thiobacillus thioparus, Hallothiobacillus neapolitanus, Starkeya novella; ”silicate bacteria” (Bacillus circulans) producing organic acids and exopolysaccharides; bacteria possessing urease enzymatic activity (Corynebacterium). The best results were achieved by means of a mixed culture of urease-possessing bacteria, which under certain conditions was able to solubilize 64.4% of the copper within 30 days of leaching.
103
Authors: Orquidea Coto, Federico Galizia, Ernesto González, Ianeya Hernández, Jeannette Marrero, Edgardo R. Donati
Abstract: Cuban serpentines are known as one of the richest deposits of Ni and Co in the world. These ores are usually treated by pyrometallurgy or by hydrometallurgy. These processes generate huge volumes of mining residues, which still contains high amounts of Ni (0.25 %) and Co (0.09 %). Since metals are partially oxidized, the chances to use sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) which are able to generate sulfuric acid to leach the residues from Caron process have been evaluated. Thus, in this work, inorganic and organic acids produced in cultures with A. niger or A. thiooxidans respectively were used to study the extraction of Co and Ni from laterite tailings. The results were compared with those obtained in leaching experiments with direct inoculation of those microorganisms. 7 and 16 % of Ni and Co were leached after 3 days using A. niger and sucrose as carbon source. In stage batch one using A. thiooxidans and elemental sulfur as energy source higher percentages of metal solubilization were reached after 15 days. In stage batch two experiments were carried out using inorganic and/or organic bioacids. Metal recoveries in stage batch two using sulfuric bioacid were higher (79 % Ni and 58 % Co) than those obtained with citric bioacid (2.4 % Ni, and 38% Co). However metal recoveries using chemical leaching with citric acid were much higher (80.4 % Ni and 50 % Co using 0.5 M citric acid). Since the mineralogy composition of raw material is a parameter very important to select the leaching agent of oxide ore, the leaching of residue nickel-ferrous of the Caron process with bio-sulfuric acid produced in A. thiooxidans cultures could be an attractive alternative in the development of a sustainable technology in Cuban mining-metallurgy industry.
107
Authors: Mohammad Pazouki, M.R. Hosseini, M. Ranjbar, F. Ghavipanjeh
Abstract: In this work, bioleaching of iron from a kaolin sample was carried out using two different strains of Aspergillus niger, and the effects of strain type, pulp density, and addition time of clay on the iron removal were investigated using a full factorial design. It is concluded that strain type has the most significant effect on the iron removal. Also, the highest removal extent was 42.8% that was achieved by using the strain isolated from pistachio shell at the pulp density of 20 g/l, when the clay was added at the beginning of the experiments. The results showed that for the experiments in which the clay was added in the first day of cultivation, the average organic acids concentration (citric acid: 5.6 g/l, and oxalic acid: 4.54 g/l) were higher in comparison to those experiments in which the clay was added in the third day (citric acid: 5.25 g/l, and oxalic acid: 2.87).
111

Showing 21 to 30 of 166 Paper Titles