Information Delay Protocol Using Quantum Entangled States

Article Preview

Abstract:

In this paper we provide a information delay protocol using quantum entangled states. By sharing EPR(Einstain-Rosen-Podolsky) pairs one person can give the other person some information which cannot be read until he or she lets the latter do. The principles of quantum mechanics guarantee that the protocol is unconditionally secure. When the one decides to let the other get the information, he or she need only to send some dictates through a public classical channel. So the protocol is easier to carry out and more robust in practice.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

1274-1278

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. H. Bennet and G. Brassard: Proceedings of IEEE International conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE Press, 1984, p.175.

Google Scholar

[2] A. K. Ekert: Physical Review Letters, 67, 1991, pp.661-663.

Google Scholar

[3] C. H. Bennett, G. Brassard and N. D. Mermin: Physical Review Letters, 68, 1992, pp.557-559.

Google Scholar

[4] H. K. Lo and H. F. Chau: Science, 283, 1999, p.2050-(2056).

Google Scholar

[5] A. Cabello: Physical Review Letters, 85, 2000, pp.5635-5638.

Google Scholar

[6] P. Xue, C. F. Li and G. C. Guo: Physical Review A, 64, 2001, 032305.

Google Scholar

[7] X. Y. Li: International Journal of Modern Physics C, 14(6), 2003, pp.757-763.

Google Scholar

[8] F. G. Deng and G. L. Long: Physical Review A, 70, 2004, 012311.

Google Scholar

[9] R. Namiki and T. Hirano: Physical Review A, 74, 2006, 032301.

Google Scholar

[10] B. Qi, Y. Zhao, X. F. Ma, H-K. Lo, and L. Qian: Physical Review A, 75, 2007, 052304.

Google Scholar

[11] Y. Adachi, T. Yamamoto, M. Koashi and N. Imoto: Physical Review Letters, 99, 2007, p.180503.

Google Scholar

[12] Z. Q. Yin, Z. F. Han, F. W. Sun and G. C. Guo: Physical Review A, 76, 2007, 014304.

Google Scholar

[13] R. Matsumoto: Physical Review A, 76, 2007, 062316.

Google Scholar

[14] O. Ahonen, M. Mottonen, and J. L. O'Brien: Physical Review A, 78, 2008, 032314.

Google Scholar

[15] Y. Zhao,B. Qi, H-K. Lo: Physical Review A, 77, 2008, 052327.

Google Scholar

[16] T. Choi and M. S. Choi: Journal of Physics: Condensed Matter, 20, 2008, p.275242.

Google Scholar

[17] K. M. Horodecki, P. Horodecki, D. Leung and J. Oppenheim: IEEE Transaction Information Theory, 54(6), 2008, pp.2604-2620.

DOI: 10.1109/tit.2008.921870

Google Scholar

[18] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin: Journal of Cryptology, 5(1) , 1992, pp.3-28.

DOI: 10.1007/bf00191318

Google Scholar

[19] T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka and K, Nakamura: eprints: quant-ph/0403104.

Google Scholar

[20] W. T. Buttler et al.: Physical Review Letters, 81, 1998, pp.3283-3286.

Google Scholar

[21] X. Y. Li, D. X. Zhang: International Conference on Networking and Digital Society, 1, 2009, pp.25-28.

Google Scholar

[22] Y. H. Kim, S. P. Kulik and Y. Shih: Physical Review Letters, 86, 2001, pp.1370-1373.

Google Scholar

[23] C. Cinelli, M. Barbieri, F. De Martini and P. Mataloni: International Journal of Laser Physics, 15(1), 2005, pp.124-128.

Google Scholar