Cycle Coloring and 2-Factorizations of KV

Article Preview

Abstract:

This paper give a definition of edge matrix and cycle coloring with complete graph , and also a construction of the theorem for n Hamilton. Clarify the basic ideas of 2-factorizations with complete graph, and proof the theorem of 2-factorization. After that, we show the whole process of the complete graphs 2-factorization for K10 and K17, when it is that n=5 and n=8. We obtain the edge matrix of the K17 and edge sets for 8 Hamilton. Finally, it can be test and verify the construction of theorem with n Hamilton, and theorem of 2-factorizations is a simple and feasible effectiveness method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

1934-1937

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. D. Yuan, Q. D. Kang: On overlarge sets of Kirkman triple systems, Discrete Mathematics Vol. 310 (2010), pp.2119-2125.

DOI: 10.1016/j.disc.2010.04.006

Google Scholar

[2] R. Julian,R. Abel, E. R. Lamken, and J. H. Wang: A few more Kirkman squares and doubly near resolvable BIBDs with block size 3, Discrete Mathematics Vol. 308 (2008), pp.1102-1123.

DOI: 10.1016/j.disc.2007.04.001

Google Scholar

[3] C. J. Colbourn, A. C. H. Ling: Kirkman school project designs, Discrete Mathematics Vol. 203 (1999), pp.49-60.

DOI: 10.1016/s0012-365x(99)00015-1

Google Scholar

[4] M. J. Grannell, T.S. Griggs, K.A.S. Quinn: Smallest defining sets of directed triple systems, Discrete Mathematics Vol. 309 (2009), pp.4810-4818.

DOI: 10.1016/j.disc.2008.06.021

Google Scholar

[5] Y. X. Chang, L. F. Giovanni: The flower intersection problem for Kirkman triple systems, Journal of Statistical Planning and Inference Vol. 110 (2003), pp.159-177.

DOI: 10.1016/s0378-3758(01)00282-8

Google Scholar

[6] H. Cao, Y. Tang: On Kirkman packing designs KPD ({3, 4}, v), Discrete Mathematics, Vol. 279 (2004), pp.121-133.

DOI: 10.1016/s0012-365x(03)00263-2

Google Scholar

[7] L. J. Ji, J. G. Lei: Further results on large sets of Kirkman triple systems, Discrete Mathematics, Vol. 308 (2008), pp.4643-4652.

DOI: 10.1016/j.disc.2007.08.081

Google Scholar

[8] J. G. Lei, on large sets of Kirkman triple systems and 3-wise balanced design, Discrete Mathematics, Vol. 279 (2004), pp.345-354.

DOI: 10.1016/s0012-365x(03)00279-6

Google Scholar

[9] S. Zhang, L. Zhu: An improved product construction for large sets of Kirkman triple systems, Discrete Mathematics Vol. 260 (2003), pp.307-313.

DOI: 10.1016/s0012-365x(02)00766-5

Google Scholar

[10] D. M. Deng, R. Rolf, and S. Hao: On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12, Discrete Mathematics Vol. 261 (2003), pp.209-233.

DOI: 10.1016/s0012-365x(02)00469-7

Google Scholar

[11] D. R. Stinson: A survey of Kirkman triple systems and related designs, Discrete Mathematics Vol. 92 (1991), pp.379-393.

DOI: 10.1016/0012-365x(91)90294-c

Google Scholar

[12] S. Hao: Intersections of Kirkman triple systems, Journal of Statistical Planning and Inference, Vol. 94 (2001), pp.313-325.

DOI: 10.1016/s0378-3758(00)00262-7

Google Scholar

[13] J. G. Lei: On large sets of Kirkman systems with holes, Discrete Mathematics, Vol. 254 (2002), pp.259-274.

DOI: 10.1016/s0012-365x(01)00295-3

Google Scholar

[14] S. Zhang, L. Zhu: An improved product construction for large sets of Kirkman triple systems, Discrete Mathematics, Vol. 260 (2003), pp.307-313.

DOI: 10.1016/s0012-365x(02)00766-5

Google Scholar

[15] D. M. Deng, R. Rolf, and S. Hao: On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12, Discrete Mathematics Vol. 261 (2003), pp.209-233.

DOI: 10.1016/s0012-365x(02)00469-7

Google Scholar

[16] Y.X. Chang, L. F. Giovanni: The flower intersection problem for Kirkman triple systems, Journal of Statistical Planning and Inference Vol. 110 (2003), pp.159-177.

DOI: 10.1016/s0378-3758(01)00282-8

Google Scholar

[17] H. Cao, Y. Tang: On Kirkman packing designs KPD ({3, 4}, v): Discrete Mathematics Vol. 279 (2004), pp.121-133.

DOI: 10.1016/s0012-365x(03)00263-2

Google Scholar

[18] L.J. Ji, J.G. Lei: Further results on large sets of Kirkman triple systems, Discrete Mathematics, Vol. 308 (2008), pp.4643-4652.

DOI: 10.1016/j.disc.2007.08.081

Google Scholar