[1]
L. D. Yuan, Q. D. Kang: On overlarge sets of Kirkman triple systems, Discrete Mathematics Vol. 310 (2010), pp.2119-2125.
DOI: 10.1016/j.disc.2010.04.006
Google Scholar
[2]
R. Julian,R. Abel, E. R. Lamken, and J. H. Wang: A few more Kirkman squares and doubly near resolvable BIBDs with block size 3, Discrete Mathematics Vol. 308 (2008), pp.1102-1123.
DOI: 10.1016/j.disc.2007.04.001
Google Scholar
[3]
C. J. Colbourn, A. C. H. Ling: Kirkman school project designs, Discrete Mathematics Vol. 203 (1999), pp.49-60.
DOI: 10.1016/s0012-365x(99)00015-1
Google Scholar
[4]
M. J. Grannell, T.S. Griggs, K.A.S. Quinn: Smallest defining sets of directed triple systems, Discrete Mathematics Vol. 309 (2009), pp.4810-4818.
DOI: 10.1016/j.disc.2008.06.021
Google Scholar
[5]
Y. X. Chang, L. F. Giovanni: The flower intersection problem for Kirkman triple systems, Journal of Statistical Planning and Inference Vol. 110 (2003), pp.159-177.
DOI: 10.1016/s0378-3758(01)00282-8
Google Scholar
[6]
H. Cao, Y. Tang: On Kirkman packing designs KPD ({3, 4}, v), Discrete Mathematics, Vol. 279 (2004), pp.121-133.
DOI: 10.1016/s0012-365x(03)00263-2
Google Scholar
[7]
L. J. Ji, J. G. Lei: Further results on large sets of Kirkman triple systems, Discrete Mathematics, Vol. 308 (2008), pp.4643-4652.
DOI: 10.1016/j.disc.2007.08.081
Google Scholar
[8]
J. G. Lei, on large sets of Kirkman triple systems and 3-wise balanced design, Discrete Mathematics, Vol. 279 (2004), pp.345-354.
DOI: 10.1016/s0012-365x(03)00279-6
Google Scholar
[9]
S. Zhang, L. Zhu: An improved product construction for large sets of Kirkman triple systems, Discrete Mathematics Vol. 260 (2003), pp.307-313.
DOI: 10.1016/s0012-365x(02)00766-5
Google Scholar
[10]
D. M. Deng, R. Rolf, and S. Hao: On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12, Discrete Mathematics Vol. 261 (2003), pp.209-233.
DOI: 10.1016/s0012-365x(02)00469-7
Google Scholar
[11]
D. R. Stinson: A survey of Kirkman triple systems and related designs, Discrete Mathematics Vol. 92 (1991), pp.379-393.
DOI: 10.1016/0012-365x(91)90294-c
Google Scholar
[12]
S. Hao: Intersections of Kirkman triple systems, Journal of Statistical Planning and Inference, Vol. 94 (2001), pp.313-325.
DOI: 10.1016/s0378-3758(00)00262-7
Google Scholar
[13]
J. G. Lei: On large sets of Kirkman systems with holes, Discrete Mathematics, Vol. 254 (2002), pp.259-274.
DOI: 10.1016/s0012-365x(01)00295-3
Google Scholar
[14]
S. Zhang, L. Zhu: An improved product construction for large sets of Kirkman triple systems, Discrete Mathematics, Vol. 260 (2003), pp.307-313.
DOI: 10.1016/s0012-365x(02)00766-5
Google Scholar
[15]
D. M. Deng, R. Rolf, and S. Hao: On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12, Discrete Mathematics Vol. 261 (2003), pp.209-233.
DOI: 10.1016/s0012-365x(02)00469-7
Google Scholar
[16]
Y.X. Chang, L. F. Giovanni: The flower intersection problem for Kirkman triple systems, Journal of Statistical Planning and Inference Vol. 110 (2003), pp.159-177.
DOI: 10.1016/s0378-3758(01)00282-8
Google Scholar
[17]
H. Cao, Y. Tang: On Kirkman packing designs KPD ({3, 4}, v): Discrete Mathematics Vol. 279 (2004), pp.121-133.
DOI: 10.1016/s0012-365x(03)00263-2
Google Scholar
[18]
L.J. Ji, J.G. Lei: Further results on large sets of Kirkman triple systems, Discrete Mathematics, Vol. 308 (2008), pp.4643-4652.
DOI: 10.1016/j.disc.2007.08.081
Google Scholar