Preparation and Properties of Composite Photocatalyst of Needle ZnO Nanorod Grafted in the Pores of Expanded Graphite

Article Preview

Abstract:

A composite photocatalyst of needle ZnO nanorod grafted in the pores of expanded graphite (EG) was prepared by a process of hydrolysis method directly, in which the expanded graphite was prepared by microwave irradiation. Scanning electron microscope (SEM) and Fourier transformation infrared spectroscope (FT-IR) were used to characterize the structure and the chemical structure of the photocatalyst. The results indicate that expanded graphite had a unique net-like pores structure and ZnO Nanorod was loaded on EG to form EG/ZnO composite photocatalyst.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

273-277

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. S. Chen, X. H. Chen ,B. Yi, T. G. Liu, et al. Acta Mater. 54 (2006) 5401-5407.

Google Scholar

[2] A. Akyol, M. Bayramoglu. J. Hazard. Mater. 180 (2010) 466-473.

Google Scholar

[3] Y. Natsume, H. Sakata. Thin Solid Films. 372 (2000) 30-32.

Google Scholar

[4] Y. C. Zhang, J. F. Xie, H. Y. Wu, et al. Mater. Sci. 620-622 (2009) 485-488.

Google Scholar

[5] S. O'Brien, M. G. Nolan, M. Çopuroglu, etal. Thin Solid Films. 518 (2010) 4515-4519.

Google Scholar

[6] S. Dutta, S. Chattopadhyay, A. Sarkar, et al. Prog. Mater. Sci. 54 (2009) 89-136.

Google Scholar

[7] Y. Li, W. Xie, X. Hu, et al. Langmuir. 26 (2010) 591-597.

Google Scholar

[8] L. Mu, R.L. Sprando. Pharm. Res. 27 (2010) 1746-1749.

Google Scholar

[9] M. A. Behnajady, N. Modirshahla, N. Daneshvar, et al. Mater. 140 (2007) 257-263.

Google Scholar

[9] A. Akyol, M. Bayramoglu, J. Hazard. Mater. 175 (2010) 484-491.

Google Scholar

[10] F. Peng, H. Wang, H. Yu, et al. Mater. Res. Bull. 41 (2006) 2123-2129.

Google Scholar

[11] Y. C. Zhang, H. Y. Wu, Y. P. Qiu. Mater. Sci. 610-613 (2009) 323-334.

Google Scholar

[13] J. G. Zhao, Q. Q . Guo, J.L. Shi, et al. Carbon. 47 (2009) 1747-1751.

Google Scholar

[14] J. H. Li, H. F. Da, Q. Liu, et al. Mater Lett. 60 (2006) 3927-3930.

Google Scholar

[15] X. Q. Yue, H. Wang, S.Y. Wang, et al. J. Alloy. Compd. 505 (2010) 286-290.

Google Scholar

[16] B. Tryba, A. W. Morawski, M. Inagaki. Carbon. 43 (2005) 2397-2429.

Google Scholar

[17] K. Tominaga, T. Takao, A. Fukushima, et al. Vacuum. 66 (2002) 505-509.

Google Scholar

[18] P. Mitra, J. Khan. Mater. Chem. Phys. 98 (2006) 279-284.

Google Scholar

[19] A. E. Jimenez-Gonzailez, P. K. Nair. Semicond. Sci. Technol. 10 (1995) 1277-1281.

Google Scholar

[20] M. Krunks, E. Mellikov. Thin Solid Films. 270 (1995) 33-36.

Google Scholar

[21] L. J. Mandalapu, F. X. Xiu, Z. Yang, et al. Appl. Phys. Lett. 88 (2006) 112108.

Google Scholar

[22] N. Viart, M. Richard-Plouet, D. Muller, et al. Thin Solid Films. 437 (2003) 1-9.

Google Scholar

[23] O. A. Fouad, A. A. Ismail, Z. I. Zaki, et al. Appl. Catal. B-Environ. 62 (2006) 144-149.

Google Scholar

[24] Y. G. Wang, S. P. Lau, H. W. Lee, et al. J. Appl. Phys. 94 (2003) 354-358.

Google Scholar

[25] Y. Leprince-Wang, K. Y. Zhang, V. N. Van. Thin Solid Films. 307 (1997) 38-42.

Google Scholar

[26] X. Q. Yue, R. J. Zhang, H. Wang. J. Phys. Chem. Solids. 70 (2009) 1391-1394.

Google Scholar

[27] G.Y. Fang, H. Li, Z. Chen, et al. J. Hazard, Mater. 181 (2010) 1004-1009.

Google Scholar

[28] H. Li, X. Liu, G. Y. Fang. Appl Phys A . 100 (2010) 1143-1148.

Google Scholar

[29] C. F. Wan, H. R. Tan, S. M. Jin, et al. Mater. Sci. Eng. B . 150 (2008) 203-207.

Google Scholar

[30] A. Azam, F. Ahmed, N. Arshi. J. Alloy. Compd. 496 (2010) 399-402.

Google Scholar