TiO2 Nanotube Deposited in the Pores of Expanded Graphite by Microwave Irradiation

Abstract:

Article Preview

We prepared a composite photocatalyst of Stick TiO2 nanorod loaded on expanded graphite(EG).The growth of TiO2 in the pores of EG by sol–gel method under normal temperature and pressure was investigated. Results sugest that pores of the EG which can load catalyst particles (TiO2 nanotube) is the physical base. Stick TiO2 nanorod can be well loaded on EG to form EG/TiO2 composite photocatalyst. So a unique process trying to load TiO2 photocatalyst on EG to EG/TiO2 composite photocatalyst was developed by us.

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Edited by:

Helen Zhang, Gang Shen and David Jin

Pages:

278-282

Citation:

E. Q. Wang et al., "TiO2 Nanotube Deposited in the Pores of Expanded Graphite by Microwave Irradiation", Advanced Materials Research, Vols. 204-210, pp. 278-282, 2011

Online since:

February 2011

Export:

Price:

$38.00

[1] J. Matos, J. Laine, J.M. Hermann, J. Catal. 200 (2001) 10.

[2] Sleiman M, Ferronato C, Chovelon JM. Environ Sci Technol 2008; 42: 3018–24.

[3] Hoffmann MR, Martin ST, Choi WY, Bahnemann D. Chem Rev 1995; 95: 69–96.

[4] An TC, Liu JK, Li GY, et al. Appl Catal A-gen 2008; 350: 237–43.

[5] P.V. Kamat, J. Phys. Chem. C 111 (2007) 2834–2860.

[6] W.Y. Teoh, R. Amal, L. Madler, S.E. Pratsnis, Catal. Today 120 (2007)203–213.

[7] B. Neppolian, H.S. Jie, J.P. Ahn, J.K. Park, M. Anpo, M. Chem. Lett. 33(2004) 1562–1563.

[8] B. Neppolian, H. Yamashita, Y. Okada, et al, Catal. Lett. 105 (2005) 111–112.

[9] A.R. Gandhe, J.B. Fernandes, S. Varma, et al. Catal. A 238(2005) 63–71.

[10] H. Yamashita, M. Harada, J. Misaka, et al. Catal. Today 84 (2003) 191–196.

[11] Li JH, Da HF, Liu Q, Liu SF. Mater Lett 2006; 60: 3927–30.

[12] Cao NZ, Shen WC, Wen SZ, et al. Mater Sci Eng (Chinese) 1996; 14: 22–6.

[13] Liu JP, Song KM. J Funct Mater (Chinese) 1998; 29; 659–61.

[14] Cao N, Shen W, Wen S, Liu Y. Chem Bull 1996; 4: 37–41.

[15] Lu JM, Ji SJ, Wu JF, Zhu XL. Chem J on Line 2001; 3: 41.

[16] Lu JM, Zhu XL, Zhu J, Yu J. J Appl Polym Sci 1997; 66: 129.

[17] Toyoda M, Inagaki M. Carbon 2000; 38(2): 199–210.

[18] Inagaki M, Toyoda M, Iwashita N, et al. Tanso, 2002(201): 16–25.

[19] Zhao JG, Guo QG, Shi JL, et al ARBON 47 (2009) 1747–1751.

[20] C. Wang, Z. Deng, Y. Li, Inorg. Chem. 40 (2001) 5210–5214.

[21] G.J. d.A.A. Soler-Illia, A. Louis, C. Sanchez, Chem. Mater. 14 (2002) 750–759.

[22] C. Su, C. -M. Tseng, L. -F. Chen, Thin Solid Films 498 (2006) 259–265.

[23] J.C. Yu, L. Zhang, J. Yu, New J. Chem. (2002) 416–420.

[24] H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, et al. Chem. Soc. 129 (2007) 8406–8407.

[25] K.S. Yoo, T.G. Lee, J. Kim, Micropor. Mesopor. Mater. 84 (2005) 211–217.

[26] R. Tan, Y. He, Y. Zhu, B. Xu, L. Cao, J. Mater. Sci. 38 (2003) 3973–3978.

[27] J. Jiao, Q. Xu, L. Li, J. Colloid Interface Sci. 316 (2007) 596–603.

[28] Hou YD, Wang XC, Wu L, et al. Chemosphere (2008)72: 414–21.

[29] Jensena H, Solovieva A, Lib Z, Søgaard. EG. Appl Surf Sci 2005; 246: 239.

[30] He C, Tian B, Zhang J. Micropor Mesopor Mater 2009; 126: 50–7.

[31] David Maria Tobaldi, Antonella Tucci, et al. Journal of the European Ceramic Society 30 (2010) 2481–2490.

[32] Xueqing Yue, Ruijun Zhang, et al Desalination 252 (2010) 163-166.

[33] J. N Huang,Y. C Zhang, H. Y Zhu, et al. Materials Science Forum Vols. 620-622 (2009) pp.481-484.

[34] Y. C Zhang, Z. F Zhu, HY Wu, et al. Materials Science Forum Vol. 658 (2010) pp.467-470.

[35] Y.C. ZHANG, J.N. HUANG, H.Y. WU, et al, Materials Science Forum Vols. 610-613 (2009) pp.316-322.