Coupled ZnO/TiO2 Nanorods Deposited in the Pores of Expanded Graphite Prepared by Microwave Irradiation

Article Preview

Abstract:

Expanded graphite (EG) was prepared by microwave irradiation at 1000W for 60s. The growth of coupled ZnO/TiO2 nanonods in the pores of EG by using hydrolysis method without harsh conditions was investigated and their microstructure was studied by scanning electron microscopy (SEM). Results show that pores of EG, which can load catalytic nanoparticles, is the physical base for growth of catalytic nanorods. The active edges of graphene of freshly EG is a key factor for the growth of coupled ZnO/TiO2 nanorods under non-catalytic and normal temperature and pressure conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

268-272

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Sleiman, C. Ferronato, J.M. Chovelon. Environ. Sci. Technol. 42(2008): 3018-3024.

Google Scholar

[2] T. An, J. Liu, G. Li, et al. Appli. Catal. A: Gen (350)2008: 273-243.

Google Scholar

[3] J. Araña, O.G. Díaz, M.M. Saracho, et al. Appli. Catal. B: Environ. (36)2002: 113-124.

Google Scholar

[4] S. Klosek, D. Raftery. J. Phys. Chem. B (105)2001: 2815-2819.

Google Scholar

[5] Ha Sung Park, Dong Hyun Kim, Sun Jae Kim, et al. J. Alloys Compd. (415)2006: 51-55.

Google Scholar

[6] C.H. Chiou, R.S. Juang. J. Hazard. Mater. (149)2007: 1-7.

Google Scholar

[7] I.M. Arabatzis, T. Stergiopoulos, D. Andreeva, et al. J. Catal. (220)2003: 127-135.

Google Scholar

[8] S. Sakthivel, M.V. Shankar, M. Palanichamy, et al. Water Res. (38)2004: 3001-3008.

Google Scholar

[9] A.L. Stroyuk, V.V. Shvalagin, S.Y. Kuchmii. J. Photochem. Photobiol. A: Chem. (173)2005: 185-194.

Google Scholar

[10] J.C. Tristão, F. Magalhães, P. Corio, et al. J. Photochem. Photobiol. A: Chem. (181)2006: 152-157.

Google Scholar

[11] D.L. Liao, C.A. Badour, B.Q. Liao. J. Photochem. Photobiol. A: Chem. (194)2008: 11-19.

Google Scholar

[12] M.L. Zhang, T.C. An, X.L. Liu, et al., Mater. Lett. 64(2010): 1883-1886.

Google Scholar

[13] D.D.L. Chung. J. Mater. Sci. (22)1987: 4190-4198.

Google Scholar

[14] Guy Furdin. Fuel (77)1998: 479-485.

Google Scholar

[15] M. Inagaki, R. Tashiro, M. Toyoda, et al. J. Phys. Chem. Solids (65)2004: 133-137.

Google Scholar

[16] O.Y. Kwon, S.W. Choi, K.W. Park, et al. J. Ind. Eng. Chem. (9)2003: 743–747.

Google Scholar

[17] E.H.L. Falcao, R.G. Blair, J.J. Mack. et al. Carbon (45)2007: 1367-1369.

Google Scholar

[18] T. Beata, W.M. Antoni, I. Michio. Carbon (43)2005: 2417–2419.

Google Scholar

[19] K. Tominaga, T. Takao, A. Fukushima, et al. Vacuum 66(2002): 505-509.

Google Scholar

[20] N. Naghavi, C. Marcel, L. Dupont, et al. J. Mater. Chem. 10 (2000): 2315-2319.

Google Scholar

[21] P. Mitra, J. Khan, Mater. Chem. Phys. 98(2006): 279-284.

Google Scholar

[22] V.R. Shinde, C.D. Lokhanda, R.S. Mane. S.H. Han. Appl. Surf. Sci. 245(2005): 407-413.

Google Scholar

[23] M. Krunks, E. Mellikov. Thin Solid Films 270(1995) 33-36.

Google Scholar

[24] L.J. Mandalapu, F.X. Xiu, Z. Yang, et al. Appl. Phys. Lett. 88, 112108(2006).

Google Scholar

[25] Fouad, A.A. Ismail, Z.I. Zaki, et al. Appl. Catal. B: Environ. 62(2006) 144-149.

Google Scholar

[26] Y.L. Wang, K.Y. Zhang, V.N. Van, et al. Thin Solid Films 307(1997): 38-42.

Google Scholar

[27] M.M. Yoshida, V.C. Martinez, P.A. Madrid, et al. Thin Solid Films 419(2002): 60-64.

Google Scholar

[28] Y. Yamaguchi, M. Yamazaki, S. Yoshihara, et al. J. Electroanal. Chem. 442(1998): 1-3.

Google Scholar

[29] M.A. Behnajady, N. Modirshahla, N. Daneshvar, et al. J. Hazard. Mater. 140(2007): 257-263.

Google Scholar

[30] X. Q. Yue, R. J. Zhang, H. Wang. J. Phys. Chem. Solids. 70 (2009) 1391-1394.

Google Scholar