[1]
Fang Jinqin, Wang Xiaofan, Zheng Zigan, Bi Qiao, Di Zengru, Li Xian. New interdisciplinary science: Network science (I). Progress in Physics, 2007, 27(3): 239-343.
Google Scholar
[2]
Fang Jinqin, Wang Xiaofan, Zheng Zigan, Bi Qiao, Di Zengru, Li Xian. New interdisciplinary science: Network science (II). Progress in Physics, 2007, 27(4): 361-448.
Google Scholar
[3]
Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Phys. Rev. Lett., 2001, 86: 3200-3203.
DOI: 10.1103/physrevlett.86.3200
Google Scholar
[4]
Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys. Rev. E, 2001, 63: 066117.
DOI: 10.1103/physreve.63.066117
Google Scholar
[5]
Newman M E J. Spread of epidemic disease on networks. Phys. Rev. E, 2002, 66: 06128.
Google Scholar
[6]
Moreno Y, Pastor-Satorras R, and Vespignani A. Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J B, 2002, 26: 521-529.
DOI: 10.1140/epjb/e20020122
Google Scholar
[7]
Lin Guoji, Jia Xun, Ouyang Qi. Predict SARS infection with the small world network model. Journal of Peking University (Health Sciences), 2003, 35: 66-69.
Google Scholar
[8]
Liu Z R, Yan J R, Zhang J G, Wang L. Epidemic Dynamics with Feedback Mechanism in Exponential Networks. Chin. Phys. Lett., 2006, 23: 1343-1351.
Google Scholar
[9]
Barabási A L. Albert R, Emergence of scaling in random network. Science, 1999, 286: 509-512.
Google Scholar
[10]
Barabási A L, Albert R, and Jeong H. Mean-field theory for scale-free random networks. Physics A, 1999, 272: 173-187.
DOI: 10.1016/s0378-4371(99)00291-5
Google Scholar
[11]
Takeuchi Y, Ma W. B, Beretta E. Nonlinear Anal. 2000, 42: 931-947.
Google Scholar
[12]
Pastor-Satorras R, Vespignani A. Epidemics and immunization in scale-free networks. Wiley-VCH, Berlin, (2003).
Google Scholar